数据分析-四大步骤

一.数据抓取

方式:

1.埋点:是针对特定用户行为或事件进行捕获,处理和发送的相关技术及其实施过程

  • 如何规划数据埋点
    • 业务需求拆解,转化为数据需求
    • 定义数据口径和指标统计方式
      • 各类事件的分类和聚合(事件类型,页面位置..)
      • 确定指标的数值类型,计数方式和记录规则
      • 4W1H模型来选择数据
  • 数据埋点的分类
    • 点击事件(交互事件)
    • 曝光事件
    • 页面停留时间

案例:阅享好时光

1.业务拆解

促销活动(用户转化)

页面访问

领券

查看商品

购买商品

新人礼包(拉新,留存)

2.埋点选择

who

  • 用户的唯一标识
  • 登录用户,非登录用户
  • 会员,非会员
  • 活跃用户,非活跃用户

what

  • 三个优惠券的点击事件
  • 三个优惠券成功领取
  • 。。。。

when

  • 客户端事件

where

  • 活动页面

how

设备,网络,操作系统等

2.爬虫:利用代码模拟人的行为去各个网站抓取数据

3.程序应用接口(API):连接各种软件系统,为了能在各系统之间共享数据而开放的技术接口管道。

二.数据清洗

1.缺失值处理:

根据数据信息(前后数据,其它信息)补全

特殊值,平均值,统计学模型补全

删除缺失值数据

2.数据格式内容的一致性处理

时间,日期,字符,格式

数据错位

3.逻辑错误数据处理

去重

去除不合理值

三.数据分析

1.描述性分析(发生了什么)

描述某项事物的特性,需要准确,完善甚至是实时的数据

描述性分析是通过计算数据的集中性特征(平均值和中位数)和波动性特征(标准差值)以了解数据的基本情况。因此在研究中经常是首先进行描述性分析,在此基础上再进行深入的分析

描述性统计还可用于查看数据是否有异常情况(最小值或最大值查看),比如数据中出现-2,-3等异常情况

描述性分析也可以通过峰度和偏度用于判断数据正态性情况

2.诊断性分析(为什么会发生)

在对描述性数据进行评估时,诊断分析工具将使分析师能够深入到细分的数据,从而隔离出问题的根本原因

诊断性分析是基于描述性分析之上的,诊断分析的目标是了解事情发生的原因。通过诊断分析,可以深入挖掘问题根源,识别依赖关系,找出影响因子。各种分析方法,可以知道问题是怎么发生的,这个过程依赖于我们对业务的了解程度,另外也要多和业务人员进行头脑风暴,只要是可能相关的,都纳入考虑,也可以基于现有特征构造新特征,至于是否相关可在后面的分析中进行验证。

案例:为什么6月份京东电商平台的订单量激增?从哪些角度去分析?需要哪些数据?

1.从流量,广告/开发新的渠道/

2.从转化率,针对页面,设备进行优化,是否有爆款产品,是否有新的产品

3.预测性分析(将会发生什么)

对数据特征和变量的关系进行测试,基于过去的数据对未来进行预测

4.规范性分析(需要做什么)

规范模型利用对发生的事情的理解,为什么发生了这种情况以及各种“可能发生的”分析,以帮助用户确定才去的最佳行动方案

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值