SVM学习笔记

这篇博客详细介绍了SVM的支持向量机学习过程,包括数据生成、决策函数的应用、不同核函数的选择如RBF、线性和多项式。此外,还涵盖了线性回归模型的构建、Pipeline的使用以及参数调整,如C值的范围选择和数据标准化。同时,提到了交叉验证策略StratifiedShuffleSplit以及数据转换操作。
摘要由CSDN通过智能技术生成

1、Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)  生成bool变量序列

2、xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) 生成网格型数据

3、Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])     decision_function 得到样本点到超平面的距离,ravel 合并数据行

4、Z = Z.reshape(xx.shape)  分割成xx的形状

5、plt.imshow(Z, interpolation='nearest',extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto',origin='lower', cmap=plt.cm.PuOr_r)  灰度画图

6、contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,linetypes='--') 画 xx,yy坐标下z的等高线图

7、线性回归核的选择

svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值