1、Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) 生成bool变量序列
2、xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) 生成网格型数据
3、Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) decision_function 得到样本点到超平面的距离,ravel 合并数据行
4、Z = Z.reshape(xx.shape) 分割成xx的形状
5、plt.imshow(Z, interpolation='nearest',extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto',origin='lower', cmap=plt.cm.PuOr_r) 灰度画图
6、contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,linetypes='--') 画 xx,yy坐标下z的等高线图
7、线性回归核的选择
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)