Restricted Boltzmann Machine features for digit classification

"""

==============================================================

Restricted Boltzmann Machine features for digit classification

==============================================================


For greyscale image data where pixel values can be interpreted as degrees of

blackness on a white background, like handwritten digit recognition, the

Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM

<sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear

feature extraction.


In order to learn good latent representations from a small dataset, we

artificially generate more labeled data by perturbing the training data with

linear shifts of 1 pixel in each direction.


This example shows how to build a classification pipeline with a BernoulliRBM

feature extractor and a :class:`LogisticRegression

<sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters

of the entire model (learning rate, hidden layer size, regularization)

were optimized by grid search, but the search is not reproduced here because

of runtime constraints.


Logistic regression on raw pixel values is presented for comparison. The

example shows that the features extracted by the BernoulliRBM help improve the

classification accuracy.

"""


from __future__ import print_function


print(__doc__)


# Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve

# License: BSD


import numpy as np

import matplotlib.pyplot as plt


from scipy.ndimage import convolve

from sklearn import linear_model, datasets, metrics

from sklearn.cross_validation import train_test_split

from sklearn.neural_network import BernoulliRBM

from sklearn.pipeline import Pipeline



###############################################################################

# Setting up


def nudge_dataset(X, Y):

"""

This produces a dataset 5 times bigger than the original one,

by moving the 8x8 images in X around by 1px to left, right, down, up

"""

direction_vectors = [

[[0, 1, 0],

[0, 0, 0],

[0, 0, 0]],


[[0, 0, 0],

[1, 0, 0],

[0, 0, 0]],


[[0, 0, 0],

[0, 0, 1],

[0, 0, 0]],


[[0, 0, 0],

[0, 0, 0],

[0, 1, 0]]]


shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',

weights=w).ravel()

X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors])

Y = np.concatenate([Y for _ in range(5)], axis=0)

return X, Y


# Load Data

digits = datasets.load_digits()

X = np.asarray(digits.data, 'float32')

X, Y = nudge_dataset(X, digits.target)

X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling


X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

test_size=0.2,

random_state=0)


# Models we will use

logistic = linear_model.LogisticRegression()

rbm = BernoulliRBM(random_state=0, verbose=True)


classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])


###############################################################################

# Training


# Hyper-parameters. These were set by cross-validation,

# using a GridSearchCV. Here we are not performing cross-validation to

# save time.

rbm.learning_rate = 0.06

rbm.n_iter = 20

# More components tend to give better prediction performance, but larger

# fitting time

rbm.n_components = 100

logistic.C = 6000.0


# Training RBM-Logistic Pipeline

classifier.fit(X_train, Y_train)


# Training Logistic regression

logistic_classifier = linear_model.LogisticRegression(C=100.0)

logistic_classifier.fit(X_train, Y_train)


###############################################################################

# Evaluation


print()

print("Logistic regression using RBM features:\n%s\n" % (

metrics.classification_report(

Y_test,

classifier.predict(X_test))))


print("Logistic regression using raw pixel features:\n%s\n" % (

metrics.classification_report(

Y_test,

logistic_classifier.predict(X_test))))


###############################################################################

# Plotting


plt.figure(figsize=(4.2, 4))

for i, comp in enumerate(rbm.components_):

plt.subplot(10, 10, i + 1)

plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,

interpolation='nearest')

plt.xticks(())

plt.yticks(())

plt.suptitle('100 components extracted by RBM', fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)


plt.show()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值