1. 整数在内存中的存储
2. ⼤⼩端字节序和字节序判断
3. 浮点数在内存中的存储
正文开始:
1.
整数在内存中的存储
在讲解操作符的时候,我们就讲过了下⾯的内容:
整数的2进制表⽰⽅法有三种,即
原码、反码和补码
三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0
表⽰“正”,⽤1表⽰“负”
,⽽数值位最
⾼位的⼀位是被当做符号位,剩余的都是数值位。
也就是0正1负,第一位是符号位。
正整数的原、反、补码都相同。负整数的三种表⽰⽅法各不相同。原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。补码:反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值⼀律⽤补码来表⽰和存储。原因在于,使⽤补码,可以将符号位和数值域统⼀处理;同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
这里就是解释为什么原码补码可以相互转换,而且步骤都是一样的。
原码转补码 取反加一
补码转原码 取反加一
2.
⼤⼩端字节序和字节序判断
当我们了解了整数在内存中存储后,我们调试看⼀个细节:
当一个数值超过1个字节的时候,存储在内存中有顺序问题
内存中的存储单元是1字节的
2.1
什么是⼤⼩端?
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为 ⼤端字节序存储和⼩端字节序存储 ,下⾯是具体的概念:⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存在内存的低地址处。(倒着存)⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存在内存的⾼地址处。(顺着存)上述概念需要记住,⽅便分辨⼤⼩端。
迭代之后:
2.2 为什么有⼤⼩端?
为什么会有⼤⼩端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的short 型,32 bit 的 long 型(要看具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存储模式。例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将 0x11 放在低地址中,即 0x0010 中,0x22 放在⾼地址中,即 0x0011 中。⼩端模式,刚好相反。我们常⽤的 X86 结构是⼩端模式,⽽KEIL C51 则为⼤端模式。很多的ARM,DSP都为⼩端模式。有些ARM处理器还可以由硬件来选择是⼤端模式还是⼩端模式。
2.3 练习
2.3.1 练习1
请简述⼤端字节序和⼩端字节序的概念,设计⼀个⼩程序来判断当前机器的字节序。(10分)-百度笔试题
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char *)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("⼩端\n");
}
else
{
printf("⼤端\n");
}
return 0;
}
//代码2
int check_sys()
{
union
{
int i;
char c;
}un;
un.i = 1;
return un.c;
}
练习二:
练习三:
原因是因为char的范围是0-255,所以就是如果超过255就归0了,从新开始了,具体看这个图
这是因为到负数的时候,进行原反补转换,之后又进行整形提升导致的。
这里再补充一下指针的题
3.
浮点数在内存中的存储
常⻅的浮点数:3.14159、1E10等,浮点数家族包括:
float
、
double
、
long double
类型。
浮点数表⽰的范围:float.h中定义
3.1
练习
3.2
浮点数的存储
上⾯的代码中,
n
和
*pFloat
在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别
这么⼤?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
V = (−1) ∗ S ^M ∗ 2E• (−1)S 表⽰符号位,当S=0,V为正数;当S=1,V为负数• M 表⽰有效数字,M是⼤于等于1,⼩于2的• 2 E 表⽰指数位
举例来说:
⼗进制的5.0,写成⼆进制是
101.0
,相当于
1.01×2^2
。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是
-101.0
,相当于
-1.01×2^2
。那么,S=1,M=1.01,E=2。
总结 S表示正负,0正1负,M表示有效数字,M的取值范围是1-2之间,E表示次幂。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
3.2.1 浮点数存的过程
IEEE 754对有效数字M和指数E,还有⼀些特别规定。
前⾯说过,
1
≤
M<2
,也就是说,M可以写成
1.xxxxxx
的形式,其中xxxxxx表⽰⼩数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
⾄于指数E,情况就⽐较复杂。
⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
总结:E是一个无符号整型,如果是float(也就是8位E),需要加一个中间值,这个中间值是127,E的范围是0-255。如果是double(也就是11位的E)。需要加一个中间值,这个中间值是1023,E的范围是0-2047。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。注意最后保存的是相加完之后的数
3.2.2 浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M的 第一位加上1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位
00000000000000000000000,则
其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字(
全为0的时候,不用再加第一位1)
。
这是完整的代码,指的反复研究:
E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);
好了,关于浮点数的表⽰规则,就说到这⾥。
3.3 题⽬解析
下⾯,让我们回到⼀开始的练习
先看第1环节,为什么 9 还原成浮点数,就成了 0.000000 ?
9以整型的形式存储在内存中,得到如下⼆进制序列:
0000 0000 0000 0000 0000 0000 0000 1001
⾸先,将
9
的⼆进制序列按照浮点数的形式拆分,得到第⼀位符号位s=0,后⾯8位的指数
E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)显然,V是⼀个很⼩的接近于0的正数,所以⽤⼗进制⼩数表⽰就是0.000000。
再看第2环节,浮点数9.0,为什么整数打印是 1091567616
⾸先,浮点数9.0 等于⼆进制的1001.0,即换算成科学计数法是:1.001×2^3
那么,第⼀位的符号位S=0,有效数字M等于001后⾯再加20个0,凑满23位,指数E等于3+127=130,即10000010,所以,写成⼆进制形式,应该是S+E+M,即
这个32位的⼆进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是
1091567616
。
完!