集合——HashMap的一些理解与总结

HashMap的概述

什么是HashMap?

Hashmap的底层数据结构是由数组+链表组成的,JDK 8 后又加了红黑树,是线程不安全的,允许key和value为null。底层结构数组叫哈希桶,而桶内则是链表,链表中的节点Node存放着实际的元素,当链表长度大于8且数组的长度大于64时,将链表转换为红黑数。HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。其结构如图所示:
在这里插入图片描述

为什么要使用HashMap?HashMap有哪些优点?

1.使用HashMap定义的Map集合,是无序存放的(顺序无用);
2.元素(key)不能重复,如果发现了重复的key,会进行覆盖,使用新的内容替换旧的内容;
3.使用HashMap子类保存数据时,key或value可以保存为null。
4.HashMap是异步的,线程不安全。
5.hashMap底层数据结构由数组+链表,在没有hash冲突的情况下,查找效率高,复杂度O(1).

HashMap四种遍历方式?

    private static void printHashMap1(HashMap<String, String> hashMap) {
        Set<String> keys = hashMap.keySet();
        for (String key :
                keys) {
            System.out.println(key+","+hashMap.get(key));
        }
    }
    private static void printHashMap2(HashMap<String, String> hashMap) {
        Set<String> keys = hashMap.keySet();
        Iterator iterator = keys.iterator();
        while (iterator.hasNext())
        {
            String s = (String) iterator.next();
            System.out.println(s+","+hashMap.get(s));
        }
    }
    private static void printHashMap3(HashMap<String, String> hashMap) {
        Set<Map.Entry<String,String>> entries = hashMap.entrySet();
        for (Map.Entry<String, String> entry :
                entries) {
            String key = entry.getKey();
            String value = entry.getValue();
            System.out.println(key + "," +value);
        }
    }
    private static void printHashMap4(HashMap<String, String> hashMap) {
        Set<Map.Entry<String,String>> entries = hashMap.entrySet();
        Iterator iterator = entries.iterator();
        while (iterator.hasNext())
        {
            Map.Entry<String,String> entry = (Map.Entry<String, String>) iterator.next();
            System.out.println(entry.getKey()+","+entry.getValue());
        }
    }

HashMap的实现原理

HashMap常见成员变量

在这里插入图片描述
DEFAULT_INITIAL_CAPACITY:默认初始化容量为16
MAXIMUM_CAPACITY:最大容量2^ 30 次方
DEFAULT_LOAD_FACTOR:默认的加载因子的大小 0.75
TREEIFY_THRESHOLD:树形阈值为8 :JDK 1.8 新增的,当使用树而不是链表来作为桶时使用。
UNTREEIFY_THRESHOLD:当桶上的结点数小于这个值时,树转链表。
MIN_TREEIFY_CAPACITY:桶可能是树的哈希表的最小容量为64。
transient Node<K,V>[] table:哈希表中的链表数组。
transient Set<Map.Entry<K,V>> entrySet:缓存的键值对集合。
size:键值对的数量。
modCount:当前 HashMap 修改的次数,这个变量用来保证 fail-fast 机制。(快速失败”也就是fail-fast,它是Java集合的一种错误检测机制。当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast机制。fail-fast机制
threshold:阈值,下次需要扩容时的值,等于 容量*加载因子。
loadFactor:哈希表的加载因子。

HashMap的关键方法

put方法

put方法实现的大致步骤如下:
1、根据hash值计算出key映射在哪个桶中
2、如果桶上没有发生hash碰撞,则直接插入
3、如果出现hash碰撞冲突了,需要处理冲突:
a:如果该桶使用红黑树处理冲突,则调用红黑树的方法插入;
b:否则采用传统的链式方法插入,如果链表长度达到临界值,则将链表转换为红黑树
4、如果桶中存在重复的键(hashcode与key都相等),则替换value的值
5、如果size大于阈值threshold,则进行扩容。
源码如下:

public V put(K key, V value) {
		//将key执行hash操作,将key转换为table数组的角标值。hash函数后面专门研究
        return putVal(hash(key), key, value, false, true);
    }
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果当前哈希表内容为null(说明table还没初始化过,由此可见table的初始化过程不是发生在new HashMap期间,而是发生在第一次put的时候)
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //如果要插入的位置没有元素,新建个节点并放进去
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
        	//如果要插入的桶已经有元素
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                 //p 指向要插入的桶第一个元素的位置,如果 p 的哈希值、键、值和要添加的一样,就停止找,e 指向 p
                e = p;
                //p是红黑树节点,那么肯定插入后仍然是红黑树节点,所以我们直接强制转型p后调用TreeNode.putTreeVal方法,返回的引用赋给e。
            else if (p instanceof TreeNode)
            //putTreeVal内部进行了遍历,存在相同hash时返回被覆盖的TreeNode,否则返回null。
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
            //一个计数器来计算当前链表的元素个数,并遍历链表,binCount就是这个计数器。
                for (int binCount = 0; ; ++binCount) {	
                    if ((e = p.next) == null) {  //到达链表尾部,说明链表中不存在新节点。
                        p.next = newNode(hash, key, value, null);//往链表尾部插入新的结点
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st     插入成功后,要判断是否需要转换为红黑树,因为插入后链表长度加1,而binCount并不包含新节点,所以判断时要将临界阈值减1。
                            treeifyBin(tab, hash);   //当新长度满足转换条件时,调用treeifyBin方法,将该链表转换为红黑树。
                        break;	//当然如果不满足转换条件,那么插入数据后结构也无需变动,所有插入操作也到此结束了,break退出即可。
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))		//在遍历链表的过程中,有可能遍历到与插入的key相同的节点,此时只要将value覆盖掉就可以了
                        break;  //找到了相同key的节点,那么插入操作也不需要了,直接break退出循环进行最后的value覆盖操作.
                    p = e;  //e是当前遍历的节点p的下一个节点,p = e 就是依次遍历链表的核心语句。每次循环时p都是下一个node节点。
                }
            }
            if (e != null) { // existing mapping for key  针对已经存在key的情况做处理。
                V oldValue = e.value;   //定义oldValue,即原存在的节点e的value值。
                if (!onlyIfAbsent || oldValue == null) //onlyIfAbsent表示存在key相同时不做覆盖处理,这里作为判断条件,可以看出当onlyIfAbsent为false或者oldValue为null时,进行覆盖操作。
                    e.value = value;
                afterNodeAccess(e);	//这个函数在hashmap中没有任何操作,是个空函数,他存在主要是为了linkedHashMap的一些后续处理工作。
                return oldValue;
            }
        }
        ++modCount;		//收尾工作,值得一提的是,对key相同而覆盖oldValue的情况,在前面已经return,不会执行这里,所以那一类情况不算数据结构变化,并不改变modCount值。
        if (++size > threshold)//覆盖oldValue时显然没有新元素添加,除此之外都新增了一个元素,这里++size并与threshold判断是否达到了扩容标准。
            resize();	 	//当HashMap中存在的node节点大于threshold时,hashmap进行扩容。
        afterNodeInsertion(evict);
        return null;
    }

流程图如下:
在这里插入图片描述

get方法

源码如下:

public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;	//根据key及其hash值查询node节点,如果存在,则返回该节点的value值。
    }
 final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&		
            (first = tab[(n - 1) & hash]) != null) {	//根据输入的hash值,可以直接计算出对应的下标(n - 1)& hash,缩小查询范围,如果存在结果,则必定在table的这个位置上。
            if (first.hash == hash && // always check first node	//判断第一个存在的节点的key是否和查询的key相等。如果相等,直接返回该节点。
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {	//说明桶上存在链表或者红黑树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);	 	//当这个table节点上存储的是红黑树结构时,在根节点first上调用getTreeNode方法,在内部遍历红黑树节点,查看是否有匹配的TreeNode。
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))		//当这个table节点上存储的是链表结构时,判断key是否相同。
                        return e;
                } while ((e = e.next) != null);	 //如果key不同,一直遍历下去直到链表尽头,e.next == null。
            }
        }
        return null;
    }

hash方法

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

HashMap 中通过将传入键的 hashCode 进行无符号右移 16 位,然后进行按位异或,得到这个键的哈希值。由于哈希表的容量都是 2 的 N 次方,在当前,元素的 hashCode() 在很多时候下低位是相同的,这将导致冲突(碰撞),因此 1.8 以后做了个移位操作:将元素的 hashCode() 和自己右移 16 位后的结果求异或。
设计的好处:
1、一定要尽可能降低hash碰撞,越分散越好;
2、算法一定要尽可能高效,因为这是高频操作, 因此采用位运算;

resize方法

final Node<K,V>[] resize() {
		//复制一份当前的数据
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length; //保存旧的元素个数、阈值
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)	
                newThr = oldThr << 1; // double threshold	//新的容量为旧的两倍
        }
        else if (oldThr > 0) // initial capacity was placed in 	threshold	 如果旧容量为 0 ,并且旧阈值>0,说明之前创建了哈希表但没有添加元素,初始化容量等于阈值
            newCap = oldThr;
        else {               // zero initial threshold signifies 	using defaults		//旧阈值=0,说明之前尚未创建哈希表,默认初始化容量和阈值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);	 //旧容量、旧阈值都是0,说明还没创建哈希表,容量为默认容量,阈值为 容量*加载因子
        }
        if (newThr == 0) {		 //如果新的阈值为 0 ,就得用新容量*加载因子 重计算一次
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;	//更新阈值
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;		
        if (oldTab != null) {	//接下来对哈希桶的所有节点转移到新的哈希桶中
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {	//如果哈希桶为null,则不需任何操作
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;	 //如果e的下个节点(即第二个节点)为null,则只需要将e进行转移到新的哈希桶中
                    else if (e instanceof TreeNode)	//如果哈希桶内的节点为红黑树,则交给TreeNode进行转移
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                    //将桶内的转移到新的哈希桶内
                        //利用哈希桶长度在扩容前后的区别,将桶内元素分为原先索引值和新的索引值(即原先索引值+原先容量)。
                        //loHead记录低位链表的头部节点
                        //loTail是低位链表临时变量,记录上个节点并且让next指向当前节点
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;	 //用于临时记录当前节点的next节点
                            if ((e.hash & oldCap) == 0) {		 //e.hash & oldCap==0表示扩容前后对当前节点的索引值没有发生改变
                                if (loTail == null)	 //loTail为null时,代表低位桶内无元素则记录头节点
                                    loHead = e;
                                else
                                    loTail.next = e;	//将上个节点next指向当前节点
                                 //即新的节点是插在链表的后面
                                loTail = e; //将当前节点赋值给loTail
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

扩容过程中几个关键的点:

  • 新初始化哈希表时,容量为默认容量,阈值为 容量*加载因子
  • 已有哈希表扩容时,容量、阈值均翻倍
  • 如果之前这个桶的节点类型是树,需要把新哈希表里当前桶也变成树形结构
  • 复制给新哈希表中需要重新索引(rehash),这里采用的计算方法是
    e.hash & (newCap - 1),等价于 e.hash % newCap
    结合扩容源码可以发现扩容的确开销很大,需要迭代所有的元素,rehash、赋值,还得保留原来的数据结构。
    所以在使用的时候,最好在初始化的时候就指定好 HashMap 的长度,尽量避免频繁 resize()。

HashMap与其他集合区别

HashMap与HashTable的区别

HashMapHashTable
继承父类AbstractMapDictionary
线程安全性不安全安全
contains方法HashMap把Hashtable的contains方法去掉了,改成containsValue和containsKeyHashtable则保留了contains,containsValue和containsKey三个方法,其中contains和containsValue功能相同。
key和value是否允许null值HashMap中,null可以作为键,这样的键只有一个Hashtable中,key和value都不允许出现null值。
哈希值的计算方法HashMap则是在对象的hashCode的基础右移16位Hashtable直接使用的是对象的hashCode
部实现使用的数组初始化和扩容方式不同,内存初始大小不同HashMap初始大小是16,扩容方式为HashMap是2*oldHashTable初始大小是11,扩容方式Hashtable采用的是2*old+1。

HashMap和HashSet的区别

HashMapHashSet
实现了Map接口实现Set接口
存储键值对仅存储对象
调用put()向map中添加元素调用add()方法向Set中添加元素
HashMap使用键(Key)计算HashcodeHashSet使用成员对象来计算hashcode值,对于两个对象来说hashcode可能相同,所以equals()方法用来判断对象的相等性,如果两个对象不同的话,那么返回false
HashMap相对于HashSet较快,因为它是使用唯一的键获取对象HashSet较HashMap来说比较慢

HashSet内部就是使用Hashmap实现的,和Hashmap不同的是它不需要Key和Value两个值。

HashMap常见问题

为何HashMap的数组长度一定是2的次幂?如果设置初始化容量不为2的N次幂呢?

1、根据key的hash确定其在数组的位置时,如果n为2的幂次方,可保证数据的均匀分布,减少hash冲突;如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,加大hash碰撞几率。
2、initCapacity(假设是10),由于HashMap的容量必须是2的幂,hashMap会创建一个刚好大于10,且是2的幂的大小的数组,此时数组大小应该为16.

为什么HashMap中key为自定义类时,需要重写equals方法需同时重写hashCode方法?

创建一个学生类,实例代码如下:

public class Student {
    private int  id ;

    public Student(int id) {
        this.id = id;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Student student = (Student) o;
        return id == student.id;
    }

    @Override
    public int hashCode() {
        return Objects.hash(id);
    }
}
/*
hashMap.put(new Student(1), "wangjian");  (1)
hashMap.put(new Student(1), "wangjian2");	(2)
*/

当我们往HashMap中put key值为new Student(1)的对象时,hashMap.size() = 2; 有些同学可能就疑问了,hashMap不是不允许相同的key吗?如果相同,不是直接将value覆盖吗?这里怎么是两个不同的key呢?实际上,Student类没有重写Object类的equal与hashcode方法,在判断key是否相等会先调用Student类中的hashcode()方法,但是Student类中没重写,就会调用Object类的hashcode方法,而Object类的hashcode方法返回的hash值是对象的地址。很明显(1)(2)中Student对象的地址不一样,所有计算的hashcode也不一样,hashMap认为是两个不同的对象。
若只重写hashcode方法呢?很明显也不行。因为重写hashcode方法后,虽然可以使key值相等,调用get方法的时候会到正确的位置去找,在不发生hash碰撞时是没有问题的,一旦发生hash冲突,同一个位置可能会用链表的形式存放冲突结点,这时就需要使用equal方法对比两个对象是否相同。由于没有重写equals方法,它会调用Object类的equals方法,Object的equals方法判断的是两个对象的内存地址是不是一样,由于两个Student都是new出来的,内存地址不相同,所以这时候,hashMap还是会认为是两个不同的对象。

HashMap为什么线程不安全?

在jdk1.7中,在多线程环境下,扩容时会造成环形链或数据丢失。

在jdk1.8中,在多线程环境下,会发生数据覆盖的情况。
参考博客如下:
HashMap为什么线程不安全

当两个对象的hashcode相等时会怎么样?HashMap如何解决hash碰撞的?

因为key的hashcode相同,所有在bubucket中的位置相同,发生hash碰撞,HashMap采用拉链法,将两个Entry保存在链表中。当链表上结点个数大于8且table数组上桶的个数大于64个时,将链表转换为红黑树;若链表上的结点个数大于8但table数组上桶的个数小于64,则resize扩容。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页