题目描述
HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。
现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径
输入格式
第一行:五个整数N,M,t,A,B。其中N表示学校里的路口的个数,M表示学校里的 路的条数,t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。
接下来M行,每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai != Bi,但 不保证任意两个路口之间至多只有一条路相连接。 路口编号从0到N − 1。 同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 答案模45989。
输出格式
一行,表示答案。
输入输出样例
输入 #1
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
输出 #1
4
说明/提示
对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。
对于100%的数据,N ≤ 50,M ≤ 60,t ≤ 2 30 2^{30} 230,0 ≤ A,B
解释:我们设 c [ i ] [ j ] c[i][j] c[i][j]表示边i到边j是否可以通过,然后就然后转化成了矩阵乘法问题了,快速幂后直接统计到终点的个数就好了
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=151,mod=45989;
int n,m,s,t,x[N],y[N],cnt;
ll T;
struct mat{
int c[N][N];
mat(){memset(c,0,sizeof(c));}
mat operator *(const mat&A){
mat re;
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++)
for(int k=1;k<=cnt;k++)
re.c[i][j]=(re.c[i][j]+c[i][k]*A.c[k][j]%mod)%mod;
return re;
}
}A;
mat pow(mat x,ll y){
mat re;for(int i=1;i<=cnt;i++)re.c[i][i]=1;
while(y){
if(y&1)re=re*x;
y>>=1;x=x*x;
}
return re;
}
int main(){
scanf("%d%d%lld%d%d",&n,&m,&T,&s,&t);
s++;t++; x[++cnt]=0;y[cnt]=s;
for(int i=1,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
u++,v++;
x[++cnt]=u,y[cnt]=v;
x[++cnt]=v,y[cnt]=u;
}
for(int i=1;i<=cnt;i++)
for(int j=1;j<=cnt;j++)
if(i!=j&&i!=(j^1)){
if(y[i]==x[j])A.c[i][j]=1;
}
mat Ans = pow(A,T);
int ans=0;
for(int i=1;i<=cnt;i++)if(y[i]==t){
ans = (ans + Ans.c[1][i]) %mod;
}
cout<<ans<<endl;
return 0;
}