第十一周项目1验证算法—(4)哈夫曼编码的算法验证

 copyright (c) 2016,烟台大学计算机学院 
 All rights reserved. 
 文件名称:1.cpp 
 作者:孟令康
 完成日期:2016年9月12日 
 版本号:v1.0 
 问题描述:根据哈夫曼编码树求对应的哈夫曼编码的算法
 输入描述:无。
 输出描述:哈夫曼编码算法的验证结果。

 代码:

#include <stdio.h>        
#include <string.h>        
        
#define N 50        //叶子结点数        
#define M 2*N-1     //树中结点总数        
        
//哈夫曼树的节点结构类型        
typedef struct        
{        
    char data;  //结点值        
    double weight;  //权重        
    int parent;     //双亲结点        
    int lchild;     //左孩子结点        
    int rchild;     //右孩子结点        
} HTNode;        
        
//每个节点哈夫曼编码的结构类型        
typedef struct        
{        
    char cd[N]; //存放哈夫曼码        
    int start;        
} HCode;        
        
//构造哈夫曼树        
void CreateHT(HTNode ht[],int n)        
{        
    int i,k,lnode,rnode;        
    double min1,min2;        
    for (i=0; i<2*n-1; i++)         //所有结点的相关域置初值-1        
        ht[i].parent=ht[i].lchild=ht[i].rchild=-1;        
    for (i=n; i<2*n-1; i++)         //构造哈夫曼树        
    {        
        min1=min2=32767;            //lnode和rnode为最小权重的两个结点位置        
        lnode=rnode=-1;        
        for (k=0; k<=i-1; k++)        
            if (ht[k].parent==-1)   //只在尚未构造二叉树的结点中查找        
            {        
                if (ht[k].weight<min1)        
                {        
                    min2=min1;        
                    rnode=lnode;        
                    min1=ht[k].weight;        
                    lnode=k;        
                }        
                else if (ht[k].weight<min2)        
                {        
                    min2=ht[k].weight;        
                    rnode=k;        
                }        
            }        
        ht[i].weight=ht[lnode].weight+ht[rnode].weight;        
        ht[i].lchild=lnode;        
        ht[i].rchild=rnode;        
        ht[lnode].parent=i;        
        ht[rnode].parent=i;        
    }        
}        
        
//实现哈夫曼编码        
void CreateHCode(HTNode ht[],HCode hcd[],int n)        
{        
    int i,f,c;        
    HCode hc;        
    for (i=0; i<n; i++) //根据哈夫曼树求哈夫曼编码        
    {        
        hc.start=n;        
        c=i;        
        f=ht[i].parent;        
        while (f!=-1)   //循序直到树根结点        
        {        
            if (ht[f].lchild==c)    //处理左孩子结点        
                hc.cd[hc.start--]='0';        
            else                    //处理右孩子结点        
                hc.cd[hc.start--]='1';        
            c=f;        
            f=ht[f].parent;        
        }        
        hc.start++;     //start指向哈夫曼编码最开始字符        
        hcd[i]=hc;        
    }        
}        
        
//输出哈夫曼编码        
void DispHCode(HTNode ht[],HCode hcd[],int n)        
{        
    int i,k;        
    double sum=0,m=0;        
    int j;        
    printf("  输出哈夫曼编码:\n"); //输出哈夫曼编码        
    for (i=0; i<n; i++)        
    {        
        j=0;        
        printf("      %c:\t",ht[i].data);        
        for (k=hcd[i].start; k<=n; k++)        
        {        
            printf("%c",hcd[i].cd[k]);        
            j++;        
        }        
        m+=ht[i].weight;        
        sum+=ht[i].weight*j;        
        printf("\n");        
    }        
    printf("\n  平均长度=%g\n",1.0*sum/m);        
}        
        
int main()        
{        
    int n=8,i;      //n表示初始字符串的个数        
    char str[]= {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'};        
    double fnum[]= {0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.1};        
    HTNode ht[M];        
    HCode hcd[N];        
    for (i=0; i<n; i++)        
    {        
        ht[i].data=str[i];        
        ht[i].weight=fnum[i];        
    }        
    printf("\n");        
    CreateHT(ht,n);        
    CreateHCode(ht,hcd,n);        
    DispHCode(ht,hcd,n);        
    printf("\n");        
    return 0;        
}        

运行结果:


知识点总结:

       利用哈夫曼算法构造最小二叉树。

学习心得:

       加深对哈夫曼编码的理解。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页