在一个n各节点,n-1条无向边的无向图中,求图中最远两节点的距离,将这个图看作无根树,求的是树直径
树形dp求树的直径
我们不妨设1号点为根节点,那么这就可以看做一棵有根树。
设D[x]表示从节点x出发,往以x为根的子树走,能够到达的最远距离。
设x的子节点分别为y1,y2,y3,...,yt,edge(x,y)表示从x到y的边权,则可以得到状态转移方程:
D[x]=max{D[yi]+edge(x,yi)}
接下来,我们考虑对于每个节点x求出经过x的最长链的长度F[x],整棵树的直径就是max{F[x]}(1<=x<=n)。
现在我们考虑如何求F[x]。
对于任意两个节点yi和yj,经过节点x的最长链的长度可以通过四个部分来构成:
- D[yi]
- D[yj]
- 从x到yi的距离
- 从x到yj的距离
不妨设j<i,则有:
F[x]= max{D[yi]+D[yj]+edge(x,yi)+edge(x,yj)}
void dp(int x){
v[x]=1;
for(register int i=head[x];i;i=nxt[i]){
int y=ver[i];
if(v[y])continue;
dp(y);
ans=max(ans,d[x]+d[y]+edge[i]);
d[x]=max(d[x],d[y]+edge[i]);
}
}
代码解释可以看图:
题意 : 先判断一下图中是否有环,有就直接输出YES,否则在输出这个无环图中的最长链
思路分析:判断一个图中是否有环,采用并查集即可,找树上的最长链,也就是树的直径,有两种方法,一种是用采用树形dp,那么树上最长的链就是当前结点最远和次远的儿子加起来的和。
dp[x][0] 表示树上次远的距离是多少, dp[x][1]表示树上最远的距离是多少。
代码示例:
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=1e5+5;
int n,m;
struct node{
int to,cost;
node(int to,int cost){
this->to=to;
this->cost=cost;
}
};
vector<node>ve[maxn];
int f[maxn];
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
bool vis[maxn];
int dp[maxn][2];
int ans;
void dfs(int x,int fa){
vis[x]=true;
for(int i=0;i<ve[x].size();i++){
int to=ve[x][i].to;
int cost=ve[x][i].cost;
if(to==fa) continue;
dfs(to,x);
if (dp[x][1] < dp[to][1]+cost){
dp[x][0] = dp[x][1];
dp[x][1] = dp[to][1]+cost;
}
else if (dp[x][0] < dp[to][1]+cost)
dp[x][0] = dp[to][1]+cost;
}
ans = max(ans, dp[x][1]+dp[x][0]);
}
int main(){
int x,y,z;
while(~scanf("%d%d", &n, &m)){
for(int i=1;i<=n;i++)f[i]=i,ve[i].clear();
int flag=0;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
ve[x].push_back(node(y,z));
ve[y].push_back(node(x,z));
int x1=find(x);int x2=find(y);
if(x1==x2)flag=1;
else f[x1]=x2;
}
if (flag) {printf("YES\n"); continue;}
memset(vis,false,sizeof(vis));
memset(dp,0,sizeof(dp));
ans=0;
for(int i=1;i<=n;i++)//跑树dp
if(!vis[i]) dfs(i,0); //因为不成环,是很多个各不联通的分量,所以跑一遍循环
printf("%d\n", ans);
}
return 0;
}