hdu 4514 树形DP求树直径

13 篇文章 1 订阅

在一个n各节点,n-1条无向边的无向图中,求图中最远两节点的距离,将这个图看作无根树,求的是树直径

树形dp求树的直径
我们不妨设1号点为根节点,那么这就可以看做一棵有根树。
设D[x]表示从节点x出发,往以x为根的子树走,能够到达的最远距离。

设x的子节点分别为y1,y2,y3,...,yt,edge(x,y)表示从x到y的边权,则可以得到状态转移方程:

    D[x]=max{D[yi]+edge(x,yi)}

接下来,我们考虑对于每个节点x求出经过x的最长链的长度F[x],整棵树的直径就是max{F[x]}(1<=x<=n)。

现在我们考虑如何求F[x]。
对于任意两个节点yi和yj,经过节点x的最长链的长度可以通过四个部分来构成:

  • D[yi]
  • D[yj]
  • 从x到yi的距离
  • 从x到yj的距离

不妨设j<i,则有:

 F[x]= max{D[yi]+D[yj]+edge(x,yi)+edge(x,yj)}
void dp(int x){
  v[x]=1; 
  for(register int i=head[x];i;i=nxt[i]){
      int y=ver[i];
      if(v[y])continue;   
      dp(y); 
      ans=max(ans,d[x]+d[y]+edge[i]);
      d[x]=max(d[x],d[y]+edge[i]);
  }
}

代码解释可以看图:

 

题意 : 先判断一下图中是否有环,有就直接输出YES,否则在输出这个无环图中的最长链
思路分析:判断一个图中是否有环,采用并查集即可,找树上的最长链,也就是树的直径,有两种方法,一种是用采用树形dp,那么树上最长的链就是当前结点最远和次远的儿子加起来的和。
   dp[x][0] 表示树上次远的距离是多少, dp[x][1]表示树上最远的距离是多少。
代码示例:
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=1e5+5;
int n,m;
struct node{
	int to,cost;
	node(int to,int cost){
		this->to=to;
		this->cost=cost;
	}
};
vector<node>ve[maxn];
int f[maxn];
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
bool vis[maxn];
int dp[maxn][2];
int ans;
void dfs(int x,int fa){
	vis[x]=true;
	for(int i=0;i<ve[x].size();i++){
		int to=ve[x][i].to;
		int cost=ve[x][i].cost;
		
		if(to==fa) continue;
		dfs(to,x);
		if (dp[x][1] < dp[to][1]+cost){
            dp[x][0] = dp[x][1];
            dp[x][1] = dp[to][1]+cost;
        }
        else if (dp[x][0] < dp[to][1]+cost)
            dp[x][0] = dp[to][1]+cost;    
    }  
   ans = max(ans, dp[x][1]+dp[x][0]);	
}

int main(){
	int x,y,z;
	 while(~scanf("%d%d", &n, &m)){
		for(int i=1;i<=n;i++)f[i]=i,ve[i].clear();
		int flag=0;
		for(int i=1;i<=m;i++){
			scanf("%d%d%d",&x,&y,&z);
			ve[x].push_back(node(y,z));
			ve[y].push_back(node(x,z));
			int x1=find(x);int x2=find(y);
			
			if(x1==x2)flag=1;
			else f[x1]=x2;
		}
		if (flag) {printf("YES\n"); continue;}
		memset(vis,false,sizeof(vis));
		memset(dp,0,sizeof(dp));
		ans=0;
		for(int i=1;i<=n;i++)//跑树dp 
		    if(!vis[i]) dfs(i,0); //因为不成环,是很多个各不联通的分量,所以跑一遍循环
		
		printf("%d\n", ans);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值