自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 机器学习-主成分分析法(PCA)

PCA(Principal Component Analysis),中文名为主成分分析,是一种常用的数据分析方法。通过线性变换将原始数据降维,保留尽可能多的样本信息,以发现数据中的主要特征和结构。PCA通过协方差分析,建立高维空间到低维空间的线性映射/矩阵,将高维数据投影到低维空间,并期望在所投影的维度上数据的信息量最大,使用较少的数据维度同时保留较多的原数据点。PCA的主要思想是将多个变量通过线性变换选出较少的重要变量,这些重要变量被称为主成分。

2024-01-01 21:21:05 440

原创 机器学习-支持向量机(SVM)

SVM在只有少数样本的情况下也可以取得较好的分类效果,这使得它在一些数据量较小的领域中具有很好的应用价值。SVM在进行分类时,并不需要过多的特征工程,它能够自动地根据样本点在高维空间中的分布情况来进行分类,因此对于特征的权重和数量并不敏感。SVM在进行分类时,会尽量寻找一个最优的超平面来将样本点分开,因此对于噪声数据和异常值的干扰具有较强的鲁棒性。SVM不仅可以用于二分类问题,也可以扩展到多分类问题中,这使得它在许多领域中都具有广泛的应用。

2023-12-18 21:58:16 947 1

原创 机器学习-Logistic回归

优点:计算代价不高,简单易用,易于理解和实现,适用于二分类问题缺点:容易欠拟合,分类精度可能不高,无法处理多分类问题、对数据分布和假设条件有一定要求Logistic回归与其他分类算法相比,在处理线性可分问题时具有更好的性能。

2023-12-04 21:50:57 59 1

原创 机器学习-邮件分类

朴素贝叶斯算法是一种基于贝叶斯定理的分类算法,通常用于文本分类或垃圾邮件过滤。该算法假定输入的数据之间独立,根据这个假设来计算概率。

2023-11-20 22:01:27 121 1

原创 机器学习-决策树

在决策树基于特征对实例进行分类的时候,可以认为是if-else的集合,对不同的特征进行分类。在遇到剩余的实例中所有特征相同时进行剪枝去除贡献较小的节点来减少树的复杂度,避免出现过度拟合和欠拟合的问题。决策树具有直观易懂的特点,可以用于解释一些简单的分类和回归问题。

2023-11-06 21:50:46 75 1

原创 机器学习-编译环境配置

输入conda activate,查看conda是否成功写入系统环境变量。点击Install,等待进度条完成后anaconda安装完成。输入conda activate xxx(环境名)进入虚拟环境。输入conda -V可查看当前Anaconda版本。在终端输入python查看当前python的版本号。接下来的页面没有影响安装,直接点next。win+r进入运行窗口,输入cmd。可以勾选第一个,自动配置环境变量。输入conda查看是否安装成功。输入y,回车,开始创建虚拟环境。运行exe文件,点击next。

2023-10-24 16:47:32 94

原创 机器学习-PR曲线

PR曲线用横轴表示召回率,纵轴表示精确率,将数据绘制成图表的形式。PR曲线可以用于评估分类器的性能,在处理高度不均衡的数据集时,PR曲线能表现出更多的信息。 P:查准率,精确率 精确率(precision)是预测为正例的样本中真正为正例的比例,表示预测为正例的样本中有多少是真正的正例。 R:查全率,召回率 召回率(recall)是所有真正的正例中被预测为正例的比例,表示真正的正例中有多少被正确地预测为正例。 PR曲线以P为横坐标,R为纵坐

2023-10-23 21:51:54 702

原创 机器学习--KNN算法

简单明了,易于实现方便进行多分类任务。

2023-10-09 21:59:18 59 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除