0-1背包问题

问题描述:

0-1背包问题:
T给定n中物品和一背包。物品i的重量是Wi,其价值为Vi,背包的容量为C,问:应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?
在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i(这里意思是不能将一个物品切开,装入一点)。因此,该问题称为0-1背包问题。

问题分析

可以考虑用动态规划的思想来分析这个问题,下面先清楚一下什么是动态规划吧~

动态规划
基本思想:动态规划是针对一类求解最优解的问题的算法,其核心是将一个问题分解成为若干个子问题,部分类似于分治的思想,通过求解每一次的最优决策,来得到一个最优解。在这里最重要的就是子问题的思想。
常用解题步骤:
①确定子问题
②确定状态
③推导出状态转移方程
④确定边界条件
⑤确定实现方式
⑥确定优化方法
0-1背包
我们可以用m(i,j)表示将后i个物品放入背包时,得到的最大价值。//i表示放入从i到n的物品,//j表示背包所能容纳的重量。假如现在要求将i个物品放入背包的最大价值,此时我们有两种选择
①、不放入第n个物品,此时总价值m(i+1,j)
②、放入第n个物品,此时总价值为m(i+1,j-Wi)+Vi
在这里插入图片描述

代码实现

#include<iostream>
using namespace std;

int Knapsack(int* W, int* V, int i, int j,int n)//i代表从i到n的物品可供选择//j代表背包所能承受的重量//n代表一共有n个物品
{
	if (i == n)
	{
		return j >= W[i] ? V[i] : 0;
	}
	else
	{
		if (j < W[i])
		{
			return Knapsack(W, V, i + 1, j, n);
		}
		else
		{
			return max(Knapsack(W, V, i + 1, j, n), Knapsack(W, V, i + 1, j - W[i], n) + V[i]);
		}
	}
}

int main()
{
	const int n = 5;
	const int c = 10;
	int W[n + 1] = { 0,2,2,6,5,4 };
	int V[n + 1] = { 0,6,3,5,4,6 };

	int X[n + 1] = { 0,0,0,0,0,0 };
	
	int maxv = Knapsack(W, V, 1, c, n);
	cout << maxv << endl;
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值