CodeForces - 1183H Subsequences (hard version) dp

题目链接:https://cn.vjudge.net/problem/CodeForces-1183H

题意:从长度为n的字符串中,得到k个不同的子串的最小花费。

题意和这个一样,思路也一样,知识数据不一样:https://blog.csdn.net/mmk27_word/article/details/88898296

题解:

dp[i][j]表示前i个删除j个了的数目,很明显如果没有一样的出现的话dp[i][j] = dp[i-1][j-1] + dp[i - 1][j] 

如果前面有出现过的字符呢?比如 aba 算到第二个a的时候 把ab 删掉 和 把 ba删掉 得到同一种结果

因此,对于XYYX 这种形式的我们把第一个X之前出现过的种数去掉即可,注意只向前找到第一个相同的即可,因为如果前面还有,他也已经被减过了!!!!

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[110][110];
int n;
ll k;
char s[110];
int pre[28];
int main()
{
	scanf("%d%lld",&n,&k);
	scanf("%s",s+1);
	dp[0][0]=1;
	for(int i=1;i<=n;i++)
	{
		dp[i][0]=1;
		for(int j=1;j<=i;j++)
		{
			dp[i][j]=(dp[i-1][j-1]+dp[i-1][j]);
			if(pre[s[i]-'a'] && j>=i-pre[s[i]-'a']) dp[i][j]-=dp[pre[s[i]-'a']-1][j-(i-pre[s[i]-'a'])];
			if(dp[i][j]>k) dp[i][j]=k; // 防止越界
		}
		pre[s[i]-'a']=i;
	}
	ll ans=0;
	for(int i=0;i<=n;i++)
	{
	//	cout<<dp[n][i]<<" "<<k<<endl;
		ans+=min(dp[n][i],k)*i;
		
		k-=dp[n][i];
		if(k<=0) break;
	}
	if(k>0) printf("-1\n");
	else printf("%lld\n",ans);
	return 0;
}

二:dp[i][j] 表示 前i个 选择 j个  思路其实一样

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[110][110];
int n;
ll k;
char s[110];
int pre[28];
int main()
{
	scanf("%d%lld",&n,&k);
	scanf("%s",s+1);
	dp[0][0]=1;
	for(int i=1;i<=n;i++)
	{
		dp[i][0]=1;
		for(int j=1;j<=i;j++)
		{
			dp[i][j]=(dp[i-1][j-1]+dp[i-1][j]);
			if(pre[s[i]-'a']) dp[i][j]-=dp[pre[s[i]-'a']-1][j-1];
			if(dp[i][j]>k) dp[i][j]=k;
		}
		pre[s[i]-'a']=i;
	}
	ll ans=0;
	for(int i=n;i>=0;i--)
	{
	//	cout<<dp[n][i]<<" "<<k<<endl;
		ans+=min(dp[n][i],k)*(n-i);
		
		k-=dp[n][i];
		if(k<=0) break;
	}
	if(k>0) printf("-1\n");
	else printf("%lld\n",ans);
	return 0;
}

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值