[探索DingoDB:AI驱动的分布式向量数据库]

引言

在当今数据驱动的世界中,能高效处理多模态数据的数据库变得愈发重要。DingoDB作为一种分布式多模态向量数据库,结合了数据湖和向量数据库的特点,能够存储任意类型和大小的数据(如Key-Value,PDF,音频,视频等)。本文将展示如何使用DingoDB创建一个向量存储并利用SelfQueryRetriever进行自查询,实现对多模态数据的快速分析和处理。

主要内容

创建DingoDB索引

在开始使用DingoDB前,请确保您已启动一个DingoDB实例。我们将创建一个向量存储,并用一些电影摘要数据进行初始化。

安装DingoDB客户端

首先,您需要安装DingoDB的Python客户端:

%pip install --upgrade --quiet dingodb
# 或安装最新版
%pip install --upgrade --quiet git+https://git@github.com/dingodb/pydingo.git

创建索引并上传数据

在创建索引之前,确保您拥有OpenAI API密钥以生成嵌入。

import os
from langchain_community.vectorstores import Dingo
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from dingodb import DingoDB

OPENAI_API_KEY = "your-api-key"  # 替换为您的OpenAI API密钥
os.environ["OPENAI_API_KEY"] <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值