增强你的聊天机器人:无需明确反馈的评估模板
引言
在当今的数字时代,聊天机器人已经成为部署大规模语言模型(LLM)最常见的接口之一。尽管如此,用户通常不愿意通过显式的反馈机制(如点赞或点踩按钮)提供反馈。传统的分析方法,如“会话长度”或“对话长度”,常常缺乏明确性。然而,多轮对话中蕴含着丰富的信息,我们可以将其转化为指标,以用于微调、评估和产品分析。本文将介绍一种无需用户明确反馈的聊天机器人评估模板。
主要内容
1. 反馈稀缺性问题
在Chat Langchain的案例研究中,只有约0.04%的查询获得了明确的用户反馈。大约70%的查询是对之前问题的跟进。大量的后续查询继续提供有用信息,这些信息可以用来推断此前AI响应的质量。本模板旨在解决这种“反馈稀缺”问题。
2. LangSmith平台
LangSmith是一个用于构建生产级LLM应用的平台。除了调试和离线评估功能,LangSmith还帮助你捕获用户和模型辅助的反馈,以优化你的LLM应用。本模板利用LLM生成反馈,用于持续改进服务。
3. 评估器实现
用户反馈是通过自定义的RunEvaluator
来推断的。此评估器通过EvaluatorCallbackHandler
调用,在独立的线程中运行,以免干扰聊天机器人的运行时间。以下代码展示了如何在LangChain对象上应用此自定义评估器:
my_chain.with_config(
callbacks=[
EvaluatorCallbackHandler(
evaluators=[
ResponseEffectivenessEvaluator(evaluate_response_effectiveness)
]
)
],
)
评估器利用OpenAI的函数调用API确保生成一致、结构化的输出评分。
4. 环境变量配置
确保设置OPENAI_API_KEY
以使用OpenAI模型。配置LangSmith时,设置LANGSMITH_API_KEY
:
export OPENAI_API_KEY=sk-...
export LANGSMITH_API_KEY