计算机视觉入门-梯度、算子、Canny边缘检测、非极大值抑制、双门限法

第二章 边缘检测

边缘:信号突变的地方。能够紧凑描述图片的内容信息

边缘检测的几种类型:

表面不连续 深度不连续 表面颜色不连续 投影不连续

在这里插入图片描述

可以根据求导来判断是否为断点(边缘)
在这里插入图片描述
x方向(为简便操作 ε=1):

在这里插入图片描述

实例:

在这里插入图片描述

边缘检测可以用导数得到,导数可以通过卷积核计算得到

因为是两个数进行运算所以得到的高斯核是1*2

梯度向量

梯度方向:指向灰度图变化最大的方向且方向与边垂直

描述图像中一点的梯度是由x方向导数和y方向导数决定

而两个在一起时,就是梯度方向

在这里插入图片描述在这里插入图片描述

梯度方向与边之间的关系,也就是夹角
在这里插入图片描述

梯度幅值(Gradient Magnitude)

图像中某个点的强度(变化越大说明最有可能是边)
在这里插入图片描述在这里插入图片描述

Prewitt算子

在这里插入图片描述

优点:对于单个噪声点更稳定,使得总体呈现,对于噪声使其不太突兀

Sobel算子

在这里插入图片描述

Sobel算子先进行高斯操作,即:

先平滑处理后,再进行边缘处理。效果是对噪声点敏感度低一些

Roberts算子

在这里插入图片描述

无论什么算子,再进行边缘检测时,把值为0方框连接起来代表的是边

例:Roberts算子:

在这里插入图片描述

得到图像边缘流程

1.首先进行平滑操作。寻找峰值(边缘)
在这里插入图片描述

在这里插入图片描述
滤波之后结果出现部分没有幅值,原因就是没有对图像首先进行填充,结果才能与原图规格相同

2.再对卷积之后的结果求导

在这里插入图片描述
怎么样一步就能得出结果,从而达到步骤简化:

先算出高斯模板的导数,然后只需要对图像进行一次处理即可。也就是利用高斯偏导模板
在这里插入图片描述在这里插入图片描述
高斯核求导:
在这里插入图片描述

通过增大高斯偏导核的方差就可以让图像呈现不同的结果:

在这里插入图片描述
标准差越小细节越明显,越大时其轮廓越明显

高斯平滑核与高斯偏导核区别

高斯平滑核(平滑):

1.去除高频噪声

2.没有负数

3.加权求和值为1

高斯偏导核(边缘提取):

1.求得图像边缘

2.肯定有负数

3.加权求和值为0(平坦区域才没有响应值)

4.某点越值越高与周围点差异越大(可能是边也有可能是噪声)

Canny边缘检测(The Canny edge detector)

在这里插入图片描述在这里插入图片描述
先用x卷积模板进行滤波,再用y卷积模板进行一次滤波,之后代入公式:

在这里插入图片描述

然后设置一个门限值(thresholding),如果某点的门限低于设置门限值就过滤掉

在这里插入图片描述

我们想要的值在门限值之上,也就是有些轮廓过宽,怎么进行处理

非极大值抑制(Non-maximum suppression)

也就是沿梯度方向比较出最大的梯度值的点

在这里插入图片描述

例如q的梯度值比r小那么q就被滤去 而r点的值就是需要附近点加权求和得到

非极大值抑制之后效果图:

在这里插入图片描述

观察图片可以知道人物下巴由于设置门限值过高,被过滤掉。如果门限值过低噪声就会出现

双门限法

先提高门限,把粗犷的边检测出来,再降低门限

与墙边缘有连接关系的边才有可能是有意义的边

在这里插入图片描述

Canny算子操作步骤:

1.高斯偏导滤波器(考虑噪声)

2.每个点的梯度强度(看是否是边缘)和梯度方向(看上下两个方向有没有比其大的)

3.非最大化抑制(宽变细:宽因为变化是缓慢的)

4.双门限(高门限看边,低门限把与边有联系的找回)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值