citespace使用笔记

中心性分析技巧

一、概念

  • 中心性(Centrality):作为文章A和B的关键词中介,处于中枢位置,或者有一个关键词连接好几篇文章,起着枢纽的作用。这个词就叫中介中枢,具有中心性。
  • 节点大小表示频次。(节点大小不代表中心性大小)。
  • 节点周围连线多少表示中心性大小。

二、所遇问题

  • 左侧表格里中心性全为零:需要计算中枢性。点击菜单栏第二个Metrics——compute Centrality,中心性就会显示出来。
  • 左侧表格中出现乱码:新建一个project,修改数据来源,重新跑一遍。

三、注意

  • CNKI不可以进行参考文献分析,因为下载的RefWorks里面没有参考文献信息。

参考资料

1.CiteSpace学习笔记link
待:
2.http://blog.sciencenet.cn/blog-496649-566289.html

### CiteSpace 使用教程 #### 安装与初步设置 为了开始使用CiteSpace,需先完成软件的安装。按照官方提供的指南[^1],访问指定链接下载最新版本的应用程序,并遵循给定说明逐步操作直至成功启动该应用程序。 #### 基本界面概览 初次打开CiteSpace时会看到简洁直观的操作面板,这里包含了导入文件、参数调整等多个常用选项卡。对于新手而言,熟悉各个部分的功能至关重要;这有助于后续更深入地探索其潜力所在。 #### 数据准备过程 有效的数据分析离不开高质量的数据源支持,在此之前要确保所选文献记录格式正确无误——通常是Web of Science或其他学术平台导出的标准BibTeX或RIS格式文档。接着通过菜单栏中的相应命令加载至工作区内部待处理状态。 #### 关键分析模块详解 - **共词分析**:揭示特定领域内高频出现的概念间关联程度; - **耦合分析**:考察不同作者群体之间合作模式及其演变趋势; - **时间滑动窗口**:动态追踪某一时段内的热点话题转移路径。 上述三种方法构成了CiteSpace最为核心的三大支柱之一,掌握它们可以极大提升研究成果的价值含量。 #### 可视化成果制作 当一切准备工作就绪之后便进入了令人期待的结果呈现阶段。借助内置绘图引擎轻松构建出美观大方又富含信息量的地图样式图形作品集锦。更重要的是学会从中提炼有价值的信息点来支撑论点阐述或是发现潜在的研究方向。 #### 实战演练环节 最后但同样重要的一步就是动手尝试几个具体实例练习啦!书中列举了不少经典范例可供参考模仿,比如跟踪某一学科分支的发展历程、评估某个科研团队影响力变化规律等等。这些实战经验无疑将成为日后独立开展工作的宝贵财富。 ```python # Python 示例代码用于模拟数据预处理步骤 (假设场景) import pandas as pd def preprocess_data(file_path): df = pd.read_csv(file_path, encoding='utf-8') # 清洗和转换逻辑... cleaned_df.to_csv('cleaned_' + file_path.split('/')[-1], index=False) preprocess_data('example_dataset.csv') # 调用函数执行清洗任务 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值