本文以CiteSpace软件做的关键词共现分析为例,进行关键词共现图谱含义详细解析。作者、机构、国家、学科(COOC软件可做)等网络分析与此类似。
关键词是一篇论文的核心概括,对论文关键词进行分析可对文章主题窥探一二。
而一篇论文给出的几个关键词一定存在着某种关联,而这种关联可以用共现的频次来表示。一般认为,词汇对在同一篇文献中出现的次数越多,则代表这两个主题的关系越紧密。
共词分析法利用文献集中词汇对或名词短语共同出现的情况,来确定该文献集所代表学科中各主题之间的关系。
统计一组文献的主题词两两之间在同一篇文献出现的频率,便可形成一个由这些词对关联所组成的共词网络。
CiteSpace做的图谱并不是用的原共现矩阵,而是在原矩阵的基础上通过COSINE,PMI,DICE和JACCARD标准化后的矩阵,然后利用它们进行网络可视化,至于具体使用哪种标准化,这里就要发挥人的主观能动性啦,即反复比较,观看图谱找出最符合实际情况的标准化方法。一般默认都使用COSINE余弦相似度。也有一些研究常用相异矩阵,此时可借助COOC软件计算。
所以,本质上你在做图谱前已经对该领域有所了解了,否则你无法对图谱进行有效解读,且你并不知道那个图更好! 对于刚进入领域的研究小白来说最快速的方法就是看几篇综述型文章,以达到对该领域有个大概印象。
那反过来说,既然你对该研究领域已经有了解了,为什么还要再做图谱呢?
个人认为你的图谱除了能发论文,写报告等任务外,还有两个原因&#