CiteSpace关键词共现图谱含义详细解析与注意事项

本文详述了使用CiteSpace进行关键词共现分析的过程,强调了关键词在网络分析中的重要性。关键词的共现频率揭示了主题间的关联,共词网络图谱帮助理解领域发展现状和趋势。CiteSpace的图谱基于数据驱动,可修正主观认知,辅助新手快速入门。注意事项包括文献检索、数据清洗、去重、关键词处理和缺失关键词问题。共现分析适用于作者、机构、国家等多维度,基于邻近联系法则和知识结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

​本文以CiteSpace软件做的关键词共现分析为例,进行关键词共现图谱含义详细解析。作者、机构、国家、学科(COOC软件可做)等网络分析与此类似。

关键词是一篇论文的核心概括,对论文关键词进行分析可对文章主题窥探一二。

而一篇论文给出的几个关键词一定存在着某种关联,而这种关联可以用共现的频次来表示。一般认为,词汇对在同一篇文献中出现的次数越多,则代表这两个主题的关系越紧密。

共词分析法利用文献集中词汇对或名词短语共同出现的情况,来确定该文献集所代表学科中各主题之间的关系。

统计一组文献的主题词两两之间在同一篇文献出现的频率,便可形成一个由这些词对关联所组成的共词网络。

CiteSpace做的图谱并不是用的原共现矩阵,而是在原矩阵的基础上通过COSINE,PMI,DICE和JACCARD标准化后的矩阵,然后利用它们进行网络可视化,至于具体使用哪种标准化,这里就要发挥人的主观能动性啦,即反复比较,观看图谱找出最符合实际情况的标准化方法。一般默认都使用COSINE余弦相似度。也有一些研究常用相异矩阵,此时可借助COOC软件计算。

所以,本质上你在做图谱前已经对该领域有所了解了,否则你无法对图谱进行有效解读,且你并不知道那个图更好! 对于刚进入领域的研究小白来说最快速的方法就是看几篇综述型文章,以达到对该领域有个大概印象。

那反过来说,既然你对该研究领域已经有了解了,为什么还要再做图谱呢?

个人认为你的图谱除了能发论文,写报告等任务外,还有两个原因&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值