HDU 6178 Monkeys(树上DP 17多校第十场)

  • 题目大意
    给你一颗树,让你选出k个节点和尽量少的边使得这k个节点的每个点都至少通过选出的边与一个节点相邻,文这个最少的边数是多少
  • 分析
    比较明显的DP问题
    通过观察不难发现我们应该尽量将点分成能够两两配对的点对
    所以我们希望知道以某个节点为根节点的子树中最大能匹配的点数
    为了方便状态的转移,我的做法是设
    dp[i][0] 表示以i为根的子树中能够两两配对的最大点数,不包含节点i
    dp[i][0] 表示以i为根的子树中能够两两配对的最大点数,包含节点i
    这样就有转移方程:
    dp[u][0]=vudp[v][1];
    dp[u][1]=max(dp[u][1],dp[u][0]dp[v][1]+dp[v][0]+2);
    最后再讨论以下 max(dp[1][0],dp[1][1]) 是否大于k即可
  • 总结

    1. 这道题输入需要fread,scanf会超时
    2. 我看别人的做法是直接用一个状态表示某个节点不用分0和1,更具的启发式信息是:
      看他有几个儿子和儿子中已经成对的个数,若两者之差>=1,则至少存在一个儿子能与它成对
  • 代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<map>
#include<algorithm>
#include<set>
#include<stack>
using namespace std;
#define LL long long int
const int MAXN=200055;
int T;
int n,k;
int  sum_node[MAXN];//保存以某个节点为根节点的子树的节点数目
int dp[MAXN][2];//dp[i]表示以某个点为根的子树能匹配的点数的最大值,dp[i][0]表示这个点不在匹配点中,dp[i][1]表示这个点可在可不在匹配点中
struct Edge
{
    int v;
    int next;
}edge[MAXN];
int edgecount;
int head[MAXN];
struct FastIO
{
    static const int S = 2*100;
    int wpos;
    char wbuf[S];
    FastIO() : wpos(0) {}
    inline int xchar()
    {
        static char buf[S];
        static int len = 0, pos = 0;
        if (pos==len)
            pos = 0, len = fread(buf, 1, S, stdin);
        if (pos==len) exit(0);
        return buf[pos ++];
    }
    inline int xint()
    {
        int s = 1, c = xchar(), x = 0;
        while(c<=32) c = xchar();
        if(c=='-') s = -1, c = xchar();
        for(;'0'<=c && c<='9';c=xchar()) x = x*10+c-'0';
        return x * s;
    }
    ~FastIO()
    {
        if(wpos) fwrite(wbuf, 1, wpos, stdout), wpos = 0;
    }
}io;
void Init()
{
    edgecount=0;
    memset(head,-1,sizeof(head));
    memset(sum_node,0,sizeof(sum_node));
    memset(dp,0,sizeof(dp));
}
void Add_edge(int u,int v)
{
    edge[++edgecount].v=v;
    edge[edgecount].next=head[u];
    head[u]=edgecount;
}
void In()
{
    int a;
   n=io.xint();
    k=io.xint();
    // scanf("%d%d",&n,&k);
    for(int i=1;i<n;i++)
    {
        //scanf("%d",&a);
        a=io.xint();
        Add_edge(a,i+1);
    }
}
void Dp(int u)//更新以u为根节点的sum_node和dp
{
    if(head[u]==-1){sum_node[u]=1;dp[u][0]=dp[u][1]=0;return ;}
    for(int k=head[u];k!=-1;k=edge[k].next)
    {
        int v=edge[k].v;
        Dp(v);
        sum_node[u]+=sum_node[v];
        dp[u][0]+=dp[v][1];
    }
    sum_node[u]++;
    for(int k=head[u];k!=-1;k=edge[k].next)
    {
        int v=edge[k].v;
        dp[u][1]=max(dp[u][1],dp[u][0]-dp[v][1]+dp[v][0]+2);
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    // freopen("out1.txt","w",stdout);
    scanf("%d",&T);
    while(T--)
    {
        Init();
        In();
        Dp(1);
        int t=max(dp[1][0],dp[1][1]);
        if(t<k)printf("%d\n",t/2+k-t);
        else printf("%d\n",(k+1)/2);
        //cout<<t/2+k-t<<endl;
        //cout<<dp[1][0]<<" "<<dp[1][1]<<endl;
    }
    return 0;
}
/*
2
5 2
1 1 2 2
*/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值