动态规划之背包问题

package dongtaiguihua;
//有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是v[i]。求解将哪些物品装入背包可使价值总和最大。
// 体积c[5] = {3,5,2,7,4};  价值为 v[5] = {2,4,1,6,5};背包的体积为10
//问题分解:
//“将前i件物品放入容量为y的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),
//那么就可以转化为一个只牵扯前i-1件物品的问题。
//如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为y的背包中”,价值为f[i-1][y];
//如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为y-Wi的背包中”,
//此时能获得的最大价值就是f[i-1][y-Wi]再加上通过放入第i件物品获得的价值Pi。
//所以只要比较一下f[i-1][j]的价值大还是f[i-1][y-Wi]+pi价值大即可
public class BeiBao {
	public static void main(String[] args) {
		int[] c = {3,5,2,7,4};//物品体积
		int[] v = {2,4,1,6,5};//物品价值
		int begV = 10;//背包体积
		int[][] cvs = new int[5][10];
		
		for(int i = 1; i < c.length;i++){
			for(int j = 1 ; j < begV ; j++){
				//如果体积太大,放不进去
				System.out.println("把第"+i+"个物品放到体积为"+j+"的袋子中");
				if(c[i]>j){
					cvs[i][j] = cvs[i-1][j];
					System.out.println("太大了,没有放进去");
				}else{
					if(cvs[i-1][j]>cvs[i-1][j-c[i]]+v[i]){
						System.out.println("不放第"+i+"个物品");
					}else{
						System.out.println("放第"+i+"个物品");
					}
					cvs[i][j] = max(cvs[i-1][j],cvs[i-1][j-c[i]]+v[i]);
					System.out.println("价值是"+cvs[i][j]);
				}
				System.out.println("---------------");
			}
			System.out.println();
			System.out.println("=============");
		}
		System.out.println();
	}
	public static int max(int a,int b){
		return a>b?a:b;
	}
	
}


不能确定是否正确,还有一些疑问。并没有思考的很清楚,但是应该是这个思路,需要在边界等细节上好好考虑一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值