mysql 事先经过编译并存储在数据库中的一段 SQL语句的集合,调用存储过程可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输,对于提高数据处理的效率是有好处的。对视图进行增删改本质上就是对基表的修改,视图并不存储数据,当使用WITH CHECK OPTION子句创建视图时,MySQL会通过视图检查正在更改的每个行,例如 插入,更新,删除,以使其符合视图的定义。第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。
win11远程连接MySQL(linux版),不需安装docker容器 当然也可以用FinalShell进行linux交互操作,FinalShell是一款免费的国产的集SSH工具、服务器管理、远程桌面加速的软件,同时支持Windows,macOS,Linux,它不单单是一个SSH工具,完整的说法应该叫一体化的的服务器,网络管理软件,在很大程度上可以免费替代XShell。是因为WSL版本由原来的WSL1升级到WSL2后,内核没有升级,前往微软WSL官网下载安装适用于 x64 计算机的最新 WSL2 Linux 内核更新包即可。要运行Linux GUI还需要安装相关的图形驱动。
qlib数据装载与模型搭建 API接口,方便user管理(manage)和检索(retrieve)自己的数据。数据装载好后依据实际需求和任务目标收益率搭建模型进行回测或实盘进行下单操作,同时需要进行风控和指标分析。
基于树的时间序列预测(LGBM) 梯度提升模型特别适用于处理复杂的数据集,可以处理大量特征和特征之间的交互,并且对过度拟合也很稳健,同时能够处理缺失值。在大多数时间序列预测中,尽管有Prophet和NeuralProphet等方便的工具,但是了解基于树的模型仍然具有很高的价值。ARIMA 模型使用过去的值来预测未来的值,因此过去的值是重要的候选特征,可以创建许多滞后回归因子。创建基于时间的特征,包括日期、星期、季度等各种特征,通过 pandas series 的 "date" 类中提供的一系列函数,可以轻松实现这些需求。
拆单算法交易(Algorithmic Trading) TWAPTWAP交易时间加权平均价格Time Weighted Average Price 模型,是把一个母单的数量平均地分配到一个交易时段上。该模型将交易时间进行均匀分割,并在每个分割节点上将拆分的订单进行提交。例如,可以将某个交易日的交易时间平均分为N 段,TWAP 策略会将该交易日需要执行的订单均匀分配在这N个时间段上去执行,从而使得交易均价跟踪TWAP,计算公式为:TWAP不考虑交易量的因素。TWAP的基准是交易时段的平均价格,它试图付出比此时段内平均买卖
机器学习数据预处理—统计分析方法 依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。各指标之间具有一定的相关关系。变量类型:定类变量、定量(离散和连续)变量样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
LGBM算法 原理 GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务。而LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。
数据分析与挖掘 在大数据系统上进行的离线计算通常针对(某一方面的)全体数据,比如针对历史上所有订单进行商品的关联性挖掘,这时候数据规模非常大,需要较长的运行时间,这类计算就是离线计算。MapReduce、Spark、Hive、Spark SQL这些技术主要用来解决离线大数据的计算,也就是针对历史数据进行计算分析,比如针对一天的历史数据计算,一天的数据是一批数据,所以也叫批处理计算。HBase的主要用途是在某些场景下,代替MySQL之类的关系数据库的数据存储访问,利用自己可伸缩的特性,存储比MySQL多得多的数据量。
小知识dd 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。,请你在该数组中找出 和为目标值。1、给定一个整数数组。
Qlib从入门到精通 前面谈到了简单的一个示例代码,实际上里面的策略源码和模型回测源码都需要好好了解,他这个回测系统和我之前用到的回测策略代码有不一样的地方,作为一个量化策略攻城狮,掌握源码是基本的技能。Qlib内置的数据采集里,已经支持了采集基金数据,是网上收集公募基金的数据,由于我们量化仅需要ETF的数据,所以。Qlib内置了A股、美股两个市场的历史数据,上一篇文章也谈到过,可以通过运行如下的脚本把数据自动获取到本地。dump_bin是把csv格式的数据转换为qlib的格式,这样qlib就可以使用。