洛谷 - 最大加权矩形 (前缀和,dp,矩阵压缩)

题目链接
题目:
在这里插入图片描述
在这里插入图片描述

思路:
这个就类似最大子序列,有人会问,这和最大子序列有关系???,其实在我们进行矩阵压缩后,这个问题其实就变成了最大子序列

矩阵压缩:我的理解就是把矩阵分成小的矩阵(把每种情况都分出来)。

例我们有矩阵:
1 2 3
4 5 6
7 8 9

我们先枚举第一行 1 2 3.
再加上的第二行 1 2 3 和 4 5 6
再加上第三行 1 2 3 和 4 5 6 和 7 8 9
再枚举第二行 4 5 6
再加上第三行 4 5 6 和 7 8 9
再枚举第三行 7 8 9

这样做有什么意思呢?这里我们就要用前缀和数组k,在上面的每一种情况下,进行前缀和,这里的前缀和是
前缀列之和,如: 1 2 3和 4 5 6 可以变成 5 7 9.
当变成一行的时候,就是最大子序列了,就是dp操作了。
详情代码注释

#include <bits/stdc++.h>
inline int read(){char c = getchar();int x = 0,s = 1;
while(c < '0' || c > '9') {if(c == '-') s = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x*10 + c -'0';c = getchar();}
return x*s;}
using namespace std;
#define NewNode (TreeNode *)malloc(sizeof(TreeNode))
#define Mem(a,b) memset(a,b,sizeof(a))
const int N = 1e8 + 5;
const long long INFINF = 0x7f7f7f7f7f7f7f;
const int INF = 0x3f3f3f3f;
const double EPS = 1e-7;
const unsigned long long mod = 998244353;
const double II = acos(-1);
const double PP = (II*1.0)/(180.00);
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> piil;
int n,Map[150][150],ans;
void Max(int k[])
{
    int dp[n+5] = {0};
    for(int i = 1;i <= n;i++)
    {
        dp[i] = max(dp[i],dp[i-1]+k[i]);
        ans = max(dp[i],ans);//dp操作k[i]代表的第i的位置上的数(前缀和后)
    }
}
void solve()
{
    for(int i = 1;i <= n;i++)
    {
        int k[n+5] = {0};
        for(int j = i;j <= n;j++)
        {
            for(int q = 1;q <= n;q++)
            {
                k[q] += Map[j][q];//前缀和列
            }
            Max(k);
        }
    }
}
int main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    cin >> n;
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++)
            cin >> Map[i][j];
    solve();
    cout << ans << endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值