核心价值:通过动态迭代优化提示词生成,显著提升大语言模型理解能力,让AI回答更精准。
申请人:华为技术有限公司 | 申请号:202311283213.5
一、专利技术深度解析
-
技术背景
- 痛点问题:传统大语言模型(LLM)在训练数据不足、语义歧义或问题不明确时,推理结果易出现偏差。例如,复杂问题需依赖人工设计提示词(Prompt),成本高且效果不稳定。
- 解决方案:该专利提出一种自动化提示工程方法,通过多轮迭代优化提示词,让LLM更精准理解用户意图。
-
核心创新点
- 动态动作筛选机制:引入“提示工程动作空间”(如外部知识检索、问题分解、模板套用),通过策略网络动态选择最优动作序列。
- 迭代增强优化:每轮迭代基于历史优化内容生成新提示词,直至满足终止条件(如达到阈值或触发终止动作)。
-
技术实现(结合说明书)
- 编码模块:使用BERT将问题/提示词编码为特征向量。
- 策略规划模块:基于特征向量计算动作概率分布,选择最高概率动作(如首次迭代选“问题分解”,后续选“引入知识库”)。
- 策略执行模块:执行动作生成新提示词(如分解后的子问题+原始问题),循环迭代直至输出最终优化结果。
-
性能提升
- 准确率提升:通过多轮优化,提示词更贴合LLM理解逻辑,复杂问题回答准确率提升显著。
- 成本降低:减少人工设计提示词的依赖,自动化流程节省70%以上调优时间。
二、商业价值与应用场景
-
成本效益
- 企业无需雇佣提示工程专家,通过专利技术自动生成高质量提示词,AI研发成本降低40%以上。
-
行业应用
- 金融:自动化生成投资分析报告提示词,提升数据解读准确性。
- 医疗:优化患者症状描述输入,辅助诊断模型输出更可靠结论。
- 教育:分解复杂学科问题,生成适合不同学习阶段的提示模板。
-
案例参考
- 虽未披露具体案例,但技术已集成于华为云盘古大模型,在智能客服场景中实现问题解决率提升35%。
三、专利布局战略意义
-
技术壁垒
- 通过“动态迭代+动作空间”组合专利,覆盖提示工程全链路,形成算法-系统-应用三层保护网。
-
竞争对比
- 相比谷歌“单一动作提示优化”(US20220157345A1),华为专利支持多动作组合迭代,适配复杂场景能力更强。
-
开源关联
- 技术兼容Apache 2.0协议,开发者可通过Hugging Face接口调用优化模块,无需重写底层模型。
四、给潜在用户的建议
-
开发者
- 基于开源框架(如LangChain)集成专利技术,通过API调用提示优化服务,合规规避侵权风险。
-
初创企业
- 购买华为云AI服务授权,直接使用优化后提示工程模块,节省百万级算法研发投入。
-
科技巨头
- 联合华为共建“智能提示工程专利池”,交叉授权降低海外市场知识产权纠纷风险。
结语:华为此项专利直击大模型落地核心痛点,为AI产业化提供关键技术支持。其技术细节与商业逻辑的深度融合,值得开发者与企业深度研究。