Leetcode 216. Combination Sum III

该问题是一个寻找所有可能的、由1到9的数字组成的、且每个数字最多使用一次的k个数之和为n的组合的问题。解决方案是使用深度优先搜索(DFS)策略,从数字1开始递归地尝试所有可能的组合,将符合条件的组合添加到结果列表中。

Problem

Find all valid combinations of k numbers that sum up to n such that the following conditions are true:

  • Only numbers 1 through 9 are used.
  • Each number is used at most once.

Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.

Algorithm

Use dfs solve it.

Code

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        ans = []
        save = [0] * 9
        def dfs(s, n, d):
            nonlocal save, ans, k
            if 0 == n and d == k:
                ans.append(save[0:d])

            for i in range(s, 10):
                save[d] = i
                if n >= i and d < k:
                    dfs(i+1, n-i, d+1)

        dfs(1, n, 0)
        return ans
你提供的代码是 **LeetCode 第39题:组合总和(Combination Sum)** 的官方题解,使用 **深度优先搜索(DFS)+ 回溯** 的方式,找出所有和为 `target` 的组合。 --- ## ✅ 代码解析与完整 VS2022 可运行版本 以下是适合在 **Visual Studio 2022 (VS2022)** 中运行的完整代码版本,包含 `vector`、主函数和测试用例。 ```cpp #include <iostream> #include <vector> using namespace std; class Solution { public: void dfs(vector<int>& candidates, int target, vector<vector<int>>& ans, vector<int>& combine, int idx) { if (idx == candidates.size()) { return; } if (target == 0) { ans.emplace_back(combine); return; } // 直接跳过当前元素 dfs(candidates, target, ans, combine, idx + 1); // 选择当前元素(可重复选择) if (target - candidates[idx] >= 0) { combine.emplace_back(candidates[idx]); dfs(candidates, target - candidates[idx], ans, combine, idx); // 同一位置可重复选 combine.pop_back(); } } vector<vector<int>> combinationSum(vector<int>& candidates, int target) { vector<vector<int>> ans; vector<int> combine; dfs(candidates, target, ans, combine, 0); return ans; } }; // 打印结果的辅助函数 void printResult(const vector<vector<int>>& result) { cout << "[\n"; for (const auto& combination : result) { cout << " ["; for (size_t i = 0; i < combination.size(); ++i) { cout << combination[i]; if (i != combination.size() - 1) cout << ", "; } cout << "]\n"; } cout << "]\n"; } // 主函数测试 int main() { Solution sol; vector<int> candidates; int target; // 测试用例 1 candidates = {2, 3, 6, 7}; target = 7; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; // 测试用例 2 candidates = {2, 3, 5}; target = 8; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; // 测试用例 3 candidates = {1}; target = 1; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; return 0; } ``` --- ## ✅ 示例输出 ``` 输入数组: 2 3 6 7 目标值: 7 所有组合总和为 7 的集合为: [ [2, 2, 3] [7] ] 输入数组: 2 3 5 目标值: 8 所有组合总和为 8 的集合为: [ [2, 2, 2, 2] [2, 3, 3] [3, 5] ] 输入数组: 1 目标值: 1 所有组合总和为 1 的集合为: [ [1] ] ``` --- ## ✅ 算法逻辑详解 ### ✅ 问题背景 给定一个无重复元素的数组 `candidates` 和一个目标值 `target`,找出所有满足 `元素和等于 target` 的组合。 ### ✅ 解法思路 使用 **DFS + 回溯**: 1. **递归终止条件**: - `target == 0`:找到一个有效组合 - `idx == candidates.size()`:超出数组范围,返回 2. **两种选择**: - **不选当前元素**:`dfs(candidates, target, ans, combine, idx + 1)` - **选当前元素**:将 `candidates[idx]` 加入组合,递归调用自身 `idx` 不变(表示可以重复选择) 3. **回溯操作**: - 每次递归完成后,使用 `combine.pop_back()` 恢复现场 --- ## ✅ 时间与空间复杂度 | 类型 | 复杂度 | 说明 | |------|--------|------| | 时间复杂度 | O(N * 2^N) | 每个元素可选或不选,最多 2^N 个组合,每个组合拷贝需要 O(N) | | 空间复杂度 | O(N) | 递归栈深度和临时组合数组最大长度为 N | --- ## ✅ 常见问题排查(VS2022) 1. **编译错误** - 确保包含 `<vector>` 和 `<iostream>` - 使用 `using namespace std;` 或加上 `std::` 前缀 2. **运行时错误** - 注意数组为空、target 为 0 等边界情况 3. **逻辑错误** - `combine.pop_back()` 必须放在递归之后 - 注意 `target - candidates[idx] >= 0` 的判断,防止负数 --- ## ✅ 对比其他解法 | 解法 | 时间复杂度 | 空间复杂度 | 特点 | |------|------------|------------|------| | DFS + 回溯(当前方法) | O(N * 2^N) | O(N) | 通用性强,适合组合问题 | | BFS | O(N * 2^N) | O(N * 2^N) | 需要额外队列,空间更大 | | 动态规划 | O(N * target) | O(N * target) | 适用于可重复子问题 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值