题目:给你一个等腰三角形的高h和底边长b,找到内切圆,然后不断的找切腰和前一个圆的新圆。
当圆的半径小于0.000001时,求这些圆的周长之和。
分析:计算几何。根据题意可知(画图),设三角形内切圆直径为d,则新圆是上一个圆的(h-d)/h倍;
求出半径,然后不断的缩小(h-d)/ h倍即可。
半径的求法很多,可以利用面积相等列等式(三边和*内切圆半径,底*高);
也可以利用三角函数(正切,二倍角公式)等。
说明:注意精度,开始没看到,直接求了极限:Pi*h(⊙_⊙)。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
using namespace std;
int main()
{
int T;
double b,h,a,r,sum,p,Pi = acos(-1.0);
while ( ~scanf("%d",&T) )
while ( T -- ) {
scanf("%lf%lf",&b,&h);
a = sqrt(h*h+b*b*.25);
r = h*b/(a+a+b);
p = (h-2.0*r)/h;
sum = 0.0;
while ( r > 0.000001 ) {
sum += r;
r = r*p;
}
printf("%13.6lf\n",2.0*sum*Pi);
if ( T ) printf("\n");
}
return 0;
}