题目:求不超过n的最大的x/φ(x),其中φ(x)是欧拉函数。
分析:数论,大整数。比赛时直接打表计算的。
实际上:φ(n)= n *(1 - 1/p1)*(1 - 1/p2)*(1 - 1/p3)*…*(1 - 1/pt);
所以有:x/φ(x)= 1 /((1 - 1/p1)*(1 - 1/p2)*(1 - 1/p3)*…*(1 - 1/pt));
因此,对应的最大值应该是 f(n)= 2*3*5*...*pk <= n 的最大值。
说明:在比赛即将结束的20分钟,猛敲了这到题目。(2011-9-19 01:12)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
char prime[ 53 ][ 101 ] = {
"2",
"6",
"30",
"210",
"2310",
"30030",
"510510",
"9699690",
"223092870",
"6469693230",
"200560490130",
"7420738134810",
"304250263527210",
"13082761331670030",
"614889782588491410",
"32589158477190044730",
"1922760350154212639070",
"117288381359406970983270",
"7858321551080267055879090",
"557940830126698960967415390",
"40729680599249024150621323470",
"3217644767340672907899084554130",
"267064515689275851355624017992790",
"23768741896345550770650537601358310",
"2305567963945518424753102147331756070",
"232862364358497360900063316880507363070",
"23984823528925228172706521638692258396210",
"2566376117594999414479597815340071648394470",
"279734996817854936178276161872067809674997230",
"31610054640417607788145206291543662493274686990",
"4014476939333036189094441199026045136645885247730",
"525896479052627740771371797072411912900610967452630",
"72047817630210000485677936198920432067383702541010310",
"10014646650599190067509233131649940057366334653200433090",
"1492182350939279320058875736615841068547583863326864530410",
"225319534991831177328890236228992001350685163362356544091910",
"35375166993717494840635767087951744212057570647889977422429870",
"5766152219975951659023630035336134306565384015606066319856068810",
"962947420735983927056946215901134429196419130606213075415963491270",
"166589903787325219380851695350896256250980509594874862046961683989710",
"29819592777931214269172453467810429868925511217482600306406141434158090",
"5397346292805549782720214077673687806275517530364350655459511599582614290",
"1030893141925860008499560888835674370998623848299590975192766715520279329390",
"198962376391690981640415251545285153602734402721821058212203976095413910572270",
"39195588149163123383161804554421175259738677336198748467804183290796540382737190",
"7799922041683461553249199106329813876687996789903550945093032474868511536164700810",
"1645783550795210387735581011435590727981167322669649249414629852197255934130751870910",
"367009731827331916465034565550136732339800312955331782619462457039988073311157667212930",
"83311209124804345037562846379881038241134671040860314654617977748077292641632790457335110",
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
"4445236185272185438169240794291312557432222642727183809026451438704160103479600800432029464270",
"1062411448280052319722448549835623701226301211611796930357321893850294264731624591303255041960530",
"256041159035492609053110100510385311995538591998443060216114576417920917800321526504084465112487730"};
int len[ 53 ];
char data[ 101 ];
int main()
{
for ( int i = 0 ; i < 53 ; ++ i )
len[ i ] = strlen( prime[ i ] );
int t;scanf("%d",&t);
for ( int k = 0 ; k < t ; ++ k ) {
scanf("%s",data);
int i = 0,l = strlen( data );
while ( l > len[ i ] ) ++ i;
if ( len[ i ] == l && strcmp( prime[ i ], data ) > 0 ) -- i;
if ( len[ i ] > l ) -- i;
if ( l == 1 && strcmp( data, "6" ) >= 0 )
printf("6\n");
else if ( l == 1 && strcmp( data, "2" ) >= 0 )
printf("2\n");
else
printf("%s\n",prime[ i ]);
}
return 0;
}