完全背包问题
有 N 种物品和一个容量是 V的背包,每种物品都有无限件可用。
第 i种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式:
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
cpp代码:
//时间复杂度:O(N*V)
#include <iostream>
#include <vector>
using namespace std;
int main(){
int N,V;
cin >> N >> V;
vector<int> a(V+1,0);
for(int i = 0; i < N ;i++){
int m,n;
cin >> m >> n;
for(int j = m; j <= V; j++){
//由于物品有多个,可能要验证当前是否拿第i个物品所依赖的状态已经取过若干个第i个物品了
//所以v的遍历是由小到大递增的
a[j] = a[j] > a[j-m]+n ? a[j] : a[j-m]+n;
}
}
cout << a[V];
return 0;
}