最全常见分布式ID生成方案

分布式ID需求背景

  • 分布式ID用于在数据量庞大、分库分表后的场景,确保数据记录的唯一性和避免数据冲突。

1. UUID

  • 实现原理:由32位16进制数和4个“-”组成,基于时间戳、硬件标识符、随机数生成。
  • 优点:本地生成,无需网络,生成性能高。
  • 缺点:无序、不适合索引、ID长,存储效率低。
  • 网络依赖性:无。

2. 数据库单点自增序列

  • 实现原理:利用中央数据库表的自增主键生成ID。
  • 优点:简单可靠,保证顺序性。
  • 缺点:单点风险,性能瓶颈,不适合高并发。
  • 网络依赖性:高。

3. 数据库集群下递增序列

  • 实现原理:集群模式,每台数据库生成自增ID,设置起始值和步长。
  • 优点:解决单点故障问题。
  • 缺点:不利于扩容,高并发下性能问题,可能导致ID不连续。
  • 网络依赖性:高。

4. 数据库号段模式

  • 实现原理:应用服务节点从中央数据库获取ID段,本地缓存使用。
  • 优点:减少数据库访问压力,提高性能。
  • 缺点:存在单点故障风险,可能导致ID浪费。
  • 网络依赖性:相对较低。

5. 雪花算法(Twitter Snowflake)

  • 实现原理:64位long类型ID,基于时间戳、节点机器ID、序列号。
  • 优点:ID有时间顺序,生成快。
  • 缺点:依赖机器时钟,可读性差。
  • 网络依赖性:通常无需网络交互。

6. Redis集群使用自增命令

  • 实现原理:利用Redis的INCR和INCRBY命令生成有序ID。
  • 优点:快速、简单、支持高并发。
  • 缺点:依赖外部Redis服务,需要额外维护。
  • 网络依赖性:高。

7. 利用Zookeeper生成唯一ID

  • 实现原理:通过Zookeeper的znode数据版本生成序列号。
  • 优点:保证ID唯一性和顺序性,适合分布式环境。
  • 缺点:增加系统复杂性,需要外部依赖。
  • 网络依赖性:高。

框架实现示例

  • 美团Leaf-segment:双buffer,异步预分发方式生成ID。
  • 滴滴Tingid:基于号段模式,支持多主节点,内存中生成ID。
  • 微信序列号生成方案:与用户uin绑定,分号段共享存储。
  • 阿里Tddl-sequence:基于DB数据段算法,本地生成序列。
  • 百度UidGenerator:基于Snowflake算法,支持自定义位数和生成策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值