分布式ID需求背景
- 分布式ID用于在数据量庞大、分库分表后的场景,确保数据记录的唯一性和避免数据冲突。
1. UUID
- 实现原理:由32位16进制数和4个“-”组成,基于时间戳、硬件标识符、随机数生成。
- 优点:本地生成,无需网络,生成性能高。
- 缺点:无序、不适合索引、ID长,存储效率低。
- 网络依赖性:无。
2. 数据库单点自增序列
- 实现原理:利用中央数据库表的自增主键生成ID。
- 优点:简单可靠,保证顺序性。
- 缺点:单点风险,性能瓶颈,不适合高并发。
- 网络依赖性:高。
3. 数据库集群下递增序列
- 实现原理:集群模式,每台数据库生成自增ID,设置起始值和步长。
- 优点:解决单点故障问题。
- 缺点:不利于扩容,高并发下性能问题,可能导致ID不连续。
- 网络依赖性:高。
4. 数据库号段模式
- 实现原理:应用服务节点从中央数据库获取ID段,本地缓存使用。
- 优点:减少数据库访问压力,提高性能。
- 缺点:存在单点故障风险,可能导致ID浪费。
- 网络依赖性:相对较低。
5. 雪花算法(Twitter Snowflake)
- 实现原理:64位long类型ID,基于时间戳、节点机器ID、序列号。
- 优点:ID有时间顺序,生成快。
- 缺点:依赖机器时钟,可读性差。
- 网络依赖性:通常无需网络交互。
6. Redis集群使用自增命令
- 实现原理:利用Redis的INCR和INCRBY命令生成有序ID。
- 优点:快速、简单、支持高并发。
- 缺点:依赖外部Redis服务,需要额外维护。
- 网络依赖性:高。
7. 利用Zookeeper生成唯一ID
- 实现原理:通过Zookeeper的znode数据版本生成序列号。
- 优点:保证ID唯一性和顺序性,适合分布式环境。
- 缺点:增加系统复杂性,需要外部依赖。
- 网络依赖性:高。
框架实现示例
- 美团Leaf-segment:双buffer,异步预分发方式生成ID。
- 滴滴Tingid:基于号段模式,支持多主节点,内存中生成ID。
- 微信序列号生成方案:与用户uin绑定,分号段共享存储。
- 阿里Tddl-sequence:基于DB数据段算法,本地生成序列。
- 百度UidGenerator:基于Snowflake算法,支持自定义位数和生成策略。