import java.util.*;
import javax.swing.*;
import java.security.PublicKey;
public class GraphL {
//顶点数组
GraphNode node[];
//定点数量,边数量
int nodeNum, edgesNum;
public static void main(String[] args) {
GraphL gl = new GraphL();
gl.initGraph(gl);
System.out.println(gl.nodeNum);
}
public void initGraph(GraphL g) {
//图的结点与边信息
Graph gh = new Graph();
int[][] adjArr = gh.setArray();
g.node = new GraphNode[adjArr.length];
g.nodeNum = adjArr.length;
//结点数组初始化
for (int i = 0; i < adjArr.length; i++) {
GraphNode gl = new GraphNode();
//结点数据
gl.data = "Tom" + i;
//结点序号
gl.adjvex = i;
g.node[i] = gl;
}
//结点邻接边初始化
for (GraphNode gn : g.node) {
GraphNode p = gn;
for (int i = 0; i < g.nodeNum; i++) {
if (adjArr[gn.adjvex][i] == 1) {
GraphNode newnode = new GraphNode();
newnode.data = g.node[i].data;
newnode.adjvex = i;
p.firstedge = newnode;
p = p.firstedge;
}
p.firstedge = null;
}
}
}
}
public class Dijkstra {
public static void main(String[] args) {
int MaxSize = 1000001;
//初始化一张图
Graph g = new Graph();
int[][] a = new int[5][5];
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++)
a[i][j] = MaxSize;
a[i][i] = 0;
}
a[0][1] = 5;
a[0][2] = 2;
a[0][3] = 6;
a[1][4] = 1;
a[2][1] = 1;
a[2][4] = 5;
a[2][3] = 3;
a[3][4] = 2;
g.initGraph(g, a);
Dijkstra s = new Dijkstra();
s.dijkstra(0, a);
}
int[] Dijkstra(Graph g, int start) {
//已经计算完成的结点
Stack<Integer> visited = new Stack<>();
//等待计算的结点
visited.push(start);
//距离数组
int d[] = new int[g.nodeNum];
for (int i = 0; i < g.nodeNum; i++) {
d[i] = 10000000;
}
d[0] = 0;
//路径
Queue<Integer> path = new LinkedList<>();
path.offer(start);
Queue<Integer> waiting = new LinkedList<>();
for (int n : g.node) {
if (n != start)
waiting.offer(n);
}
while (visited.size() != g.nodeNum && waiting.size() != 0) {
int temp[] = new int[g.nodeNum];
for (int n : waiting) {
System.out.println(visited.peek());
System.out.println(n);
temp[n] = g.arc[visited.peek()][n];
if (d[n] > temp[n]) {
d[n] = temp[n];
}
}
int minN = waiting.peek();
int minD = g.arc[visited.peek()][minN];
for (int i = 0; i < temp.length; i++) {
if (minD < temp[i]) {
minD = temp[i];
minN = i;
}
}
visited.add(minN);
waiting.remove(minN);
path.offer(minN);
}
return d;
}
public void dijkstra(int p, int[][] a) {
int n = a.length;
//存放距离
int[] d = new int[n];
//存放已经访问过的节点
Set<Integer> set = new HashSet<>(n);
set.add(p);
//初始化距离数组,默认为直达初始点的边的权重
for (int i = 0; i < n; i++) {
d[i] = a[p][i];
}
//循环终止条件为所有结点都被访问
while (set.size() < n) {
int le = Integer.MAX_VALUE;
int num = 0;
for (int i = 0; i < n; i++) {
//找出没被访问且距离初始点最近的点,记录距离le以及序号num
if (!set.contains(i) && le > d[i]) {
le = d[i];
num = i;
}
}
for (int i = 0; i < n; i++) {
if (!set.contains(i)) {
//更新最短距离数组,判断经过当前结点到达起点与直达起点哪个更近
d[i] = Math.min(d[i], d[num] + a[num][i]);
}
}
//距离最近的点标记为以访问
set.add(num);
}
for (int i = 0; i < n; i++) {
System.out.println("点" + p + "到点" + i + "的距离为:" + d[i]);
}
}
}
图的实现与Dijkstra
最新推荐文章于 2024-11-10 22:49:00 发布