BSOJ3806 TYVJ 2032 升降梯上

3806 -- 【模拟试题】升降梯上
Description
  开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道、一辆停在轨道底部的电梯、和电梯内一杆控制电梯升降的巨大手柄。
   Nescafe之塔一共有N层,升降梯在每层都有一个停靠点。手柄有M个控制槽,第i个控制槽旁边标着一个数Ci,满足 C1<C2<C3<....<CM。如果Ci>0,表示手柄扳动到该槽时,电梯将上升Ci层;如果Ci<0,表示手 柄扳动到该槽时,电梯将下降 -Ci 层;并且一定存在一个Ci=0,手柄最初就位于此槽中。注意升降梯只能在1~N层间移动,因此扳动到使升降梯移动到1层以下、N 层以上的控制槽是不允许的。
  电梯每移动一层,需要花费2秒钟时间,而手柄从一个控制槽扳到相邻的槽,需要花费1秒钟时间。探险队员现在在1层,并且想尽快到达N层,他们想知道从1层到N层至少需要多长时间?
Input
  第一行两个正整数N、M。
  第二行M个整数C1、C2......CM。
Output
  输出一个整数表示答案,即至少需要多长时间。若不可能到达输出-1。
Sample Input
6 3 -1 0 2
Sample Output
19
Hint
【样例说明】
  手柄从第二个槽扳到第三个槽(0扳到2),用时1秒,电梯上升到3层,用时4秒。
  手柄在第三个槽不动,电梯再上升到5层,用时4秒。
  手柄扳动到第一个槽(2扳到-1),用时2秒,电梯下降到4层,用时2秒。
    手柄扳动到第三个槽(-1扳倒 2),用时2秒,电梯上升到6层,用时4秒。
  总用时为(1+4)+4+(2+2)+(2+4)=19秒。
【数据规模】
  对于30%的数据,满足1≤N≤10,2<=M<=5。
  对于100%的数据,满足1≤N≤1000,2<=M<=20,-N<C1<C2<....<CM<N。

方法1:记忆化搜索,但是只能得90分,可能是我写丑了。。。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#define inf 0x3f3f3f3f
using namespace std;
int n,m,c[25],cur,f[1005],ans=0x3f3f3f3f;
inline int Abs(int x)
{
    if(x<0)x=-x;
    return x;
}
int dfs(int pos,int ti,int now)
{
    if(ti<=f[pos])f[pos]=ti;
    else return f[pos];
    for(int i=1;i<=m;i++)
    {
        if(pos+c[i]>n||pos+c[i]<1||i==cur)continue;
        f[pos+c[i]]=min(f[pos+c[i]],dfs(pos+c[i],ti+Abs(i-now)+Abs(c[i])*2,i));
    }
    return f[pos];
}
int main(){
//    freopen("updown.in","r",stdin);
//    freopen("updown.out","w",stdout);
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>c[i];
        if(c[i]==0)cur=i;
    }
    memset(f,0x3f,sizeof(f));
    f[1]=0;
    dfs(1,0,cur);

    if(f[n]==0x3f3f3f3f)cout<<-1;
    else cout<<f[n];
    return 0;
}
方法2:SPFA
     d[i][j]表示从1到i点,档位在j的最短距离
     
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
using namespace std;
struct node{int x,y;
}w[1005],q[1000005];
int cur,vis[1005][25],d[1005][25],m,c[25],n;
void spfa()
{
    int h=1,t=1;
    q[h].x=1,q[h].y=cur;
    vis[1][cur]=1,d[1][cur]=0;
    while(h<=t)
    {
        int X=q[h].x,Y=q[h].y;
        vis[X][Y]=0;
        h++;
        for(int i=1;i<=m;i++)
        {
            if(X+c[i]>=1&&X+c[i]<=n&&d[X+c[i]][i]>d[X][Y]+abs(Y-i)+2*abs(c[i]))
            {
                d[X+c[i]][i]=d[X][Y]+abs(Y-i)+2*abs(c[i]);
                if(!vis[X+c[i]][i])
                {
                    vis[X+c[i]][i]=1;
                    t++;
                    q[t].x=X+c[i],q[t].y=i;
                }
            }
        }
    }
}
int main(){
    cin>>n>>m;
    memset(d,0x3f,sizeof(d));
    for(int i=1;i<=m;i++)
    {
        cin>>c[i];
        if(c[i]==0)cur=i;
    }
    spfa();
    int ans=0x3f3f3f3f;
    for(int i=1;i<=m;i++)
      ans=min(ans,d[n][i]);
    if(ans==0x3f3f3f3f)cout<<-1;
    else cout<<ans;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值