/*#坐标离散化 (来自《挑战程序设计竞赛》P164)
给出题目和主体代码:
题目:
区域的个数
w*h的格子上画了n条或垂直或水平的宽度为1的直线。求出这些线将格子划分了多少个区域
(w和h的范围都为[1, 1e6],n的范围为[1,500])
思路:
一般先想到的是类似水塘问题的处理,建立数组并深度优先搜索
但是这个问题中w和h最大为1000000,所以没办法创建w*h的数组。因此我们要使用坐标离散化这一技巧
将前后没有变化的行列(意思是消除后不会影响区域个数的)相除后并不会影响区域的个数
数组里只需要存储有直线的行列以及其前后的行列就足够了,这样的话大小最多3n*3n就足够了,因此就可以创建出数组并利用搜索求出区域的个数
(争议:《挑战》原文是说 6n * 6n,可是我觉得似乎有些不对劲,我特意请教了师兄和队友以后,他们也觉得是3n*3n)
收获:
1. 坐标压缩
2. find函数可以在vector中找到某个元素的位置
注意,find函数要求支持 == ,所以如果是自定义类型,需要先重载 ==
blog: http://www.cnblogs.com/fnlingnzb-learner/p/5889026.html
3. 区域很大时,用递归函数可能栈溢出,故而此题改用队列
4. unique函数和erase函数
有关blog:
http://www.cnblogs.com/zhangshu/archive/2011/07/23/2115090.html
http://www.cnblogs.com/liyazhou/archive/2010/02/07/1665421.html
注意:
unique的去重并非真正的去重,只是将重复的元素都排到后面去。此外,unique只能在相邻元素中去重,所以使用之前应该先排序
*****技巧:真正的去重并删除重复部分****
vector<int> v;
sort(v.begin(), v.end());
v.erase(unique( v.begin(), v.end() ), v.end());
*/
int W, H, N;
int X1[MAX_N], X2[MAX_N], Y1[MAX_N], Y2[MAX_N];
bool fld[MAX_N * 3][MAX_N * 3]
int dx[4] = {0, 0, -1, 1};
int dy[4] = {-1, 1, 0, 0};
// 对 x1 数组和 x2 数组进行坐标离散化,并返回离散化之后的宽度
int compress (int* x1, int* x2, int w)
{
vector<int> xs;
for (int i = 0; i < N; i++)
{
for (int d = -1; d <= 1; d++)
{
int tx1 = x1[i] + d, tx2 = x2[i] + d;
if (tx1 >= 1 && tx1 <= w) xs.push_back(tx1);
if (tx2 >= 1 && tx2 <= w) xs.push_back(tx2);
}
}
sort(xs.begin(), xs.end());
xs.erase(unique(xs.begin(), xs.end()), xs.end());
for (int i = 0; i < N; i++)
{
x1[i] = find(xs.begin(), xs.end(), x1[i]) - xs.begin();
x2[i] = find(xs.begin(), xs.end(), x2[i]) - xs.begin();
}
return xs.size();
}
/*这个函数对坐标进行了压缩:
1. 将坐标的值变成了“这是第几种坐标”(种类和区域个数有关,同个区域的就是同一种坐标),函数返回值是一共有多少种坐标
2. 起止行(列)的前后行(列)若在 w*w 的范围内,则压栈(其实是压入队列)其前后行(列),因为每个黑行对数区域的影响,也就只有它的前后行和本身那行,对别的行是不会有影响的
*/
void solve()
{
// 坐标离散化
W = compress(X1, X2, W);
H = compress(Y1, Y2, H);
// 填充有直线的部分
memset(fld, 0, sizeof(fld));
for (int i = 0; i < N; i++)
for (int y = Y1[i]; y <= Y2[i]; y++)
for (int x = X1[i]; x <= X2[I]; x++)
{
fld[y][x] = true;
}
// 求区域的个数
int ans = 0;
for (int y = 0; y < H; y++)
for (int x = 0; x < W; x++)
{
if (fld[y][x]) continue;
ans++;
// 宽度优先搜索
queue<pair<int, int> > que;
que.push(make_pair(x, y));
while (!que.empty())
{
int sx = que.front().first, sy = que.front().second;
que.pop();
for (int i = 0; i < 4; i++)
{
int tx = sx + dx[i], ty = sy + dy[i];
if (tx < 0 || tx >= W || ty < 0 || ty >= H) continue;
if (fld[ty][tx]) continue;
que.push(make_pair(tx, ty));
fld[ty][tx] = true;
}
}
}
cout << ans << endl;
}