Computation Offloading for Rechargeable Users in Space-Air-Ground Networks

文章探讨了空天地网络中,针对可充电用户的计算卸载问题,提出了一种融合异构计算架构,通过多智能体优化算法解决任务调度和HAP选择,同时考虑了通信、计算资源、电池能量和任务类型的复杂性。实验结果表明其在效率和用户电池备份上具有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Computation Offloading for Rechargeable Users in Space-Air-Ground Networks[1]

翻译:空天地网络中可充电用户的计算卸载

来源:TWC

  • 二、介绍

背景:依托空天地( SAG )融合的万物人工智能( AIoE )网络,海量计算密集型时延敏感型任务既可以由地面用户本地执行,也可以卸载到SAG服务器,如远程基站、空中高空平台( HAP )和低轨卫星等。然而,考虑到动态网络环境、大规模覆盖和电池能量备份约束,通信和计算资源的联合优化成为一个巨大的挑战。

方法:本文提出了一种融合SAG的异构计算卸载架构,用于通信和计算资源的深度整合,以最大化所有用户的总速率。此外,本文提出了一种基于Lyapunov函数的多智能体近端策略优化算法来解决任务调度和HAP选择问题。基于凸优化的通信和计算资源分配方案处理CPU周期频率和传输功率。电池能量备份是通过线性规划策略来解决的。实验结果表明,本文方法在收敛速度、平均和速率和AIoE用户的电池备份水平方面有显著优势。

  • 三、方法

系统建模

  • 1、系统结构

考虑有1个卫星、K个HAP(括许多无人平台,如飞艇、气球和无人机)、1个地面基站和N个用户。卫星优点是全球覆盖,缺点是载荷有限,而且传输距离远。HAP的缺点是范围有限。考虑两种任务类型:计算密集型任务

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值