Computation Offloading for Rechargeable Users in Space-Air-Ground Networks[1]
翻译:空天地网络中可充电用户的计算卸载
来源:TWC
-
二、介绍
背景:依托空天地( SAG )融合的万物人工智能( AIoE )网络,海量计算密集型和时延敏感型任务既可以由地面用户本地执行,也可以卸载到SAG服务器,如远程基站、空中高空平台( HAP )和低轨卫星等。然而,考虑到动态网络环境、大规模覆盖和电池能量备份约束,通信和计算资源的联合优化成为一个巨大的挑战。
方法:本文提出了一种融合SAG的异构计算卸载架构,用于通信和计算资源的深度整合,以最大化所有用户的总速率。此外,本文提出了一种基于Lyapunov函数的多智能体近端策略优化算法来解决任务调度和HAP选择问题。基于凸优化的通信和计算资源分配方案处理CPU周期频率和传输功率。电池能量备份是通过线性规划策略来解决的。实验结果表明,本文方法在收敛速度、平均和速率和AIoE用户的电池备份水平方面有显著优势。
-
三、方法
系统建模
-
1、系统结构
考虑有1个卫星、K个HAP(括许多无人平台,如飞艇、气球和无人机)、1个地面基站和N个用户。卫星优点是全球覆盖,缺点是载荷有限,而且传输距离远。HAP的缺点是范围有限。考虑两种任务类型:计算密集型任务