一、介绍
我目前做的内容还没结束,不方便说,但是也是一个用户行为预测,需要自己找数据集,找方法。然后我们找到了一个类似的,先看看别人怎么做的。下载了阿里天池比赛的数据集,然后论坛中有人放了自己的代码,我自己改了改能跑起来。
二、链接
阿里天池的比赛:CIKM 2019 EComm AI:用户行为预测_算法大赛_天池大赛-阿里云天池的赛制
代码:用户行为预测,基于历史行为+热门商品补齐 成绩0.04几_天池notebook-阿里云天池
三、数据集
item.csv:商品id,商品一级类目id,商品叶子类目id,商品品牌id。
user.csv:用户id,性别,年龄,【1~9】的数
user_behavior.cs:用户id,商品id,行为,【数据集说明给的是日期,但是很明显不是,可能是时间戳】
submit.csv:自己建的,里面是空的,把最后的结果存里面
四、代码
介绍:根据商品信息(item.csv)、用户信息(user.csv)和购买信息(user_behavior.cs)给每个用户推荐50个商品。大概思路就是:给一个用户推荐商品,读用户的历史信息,有加购物车、收藏、购买、点击四种购物行为,给他们赋值,然后计算总和。比如用户把商品A加购物车了还点击了,接下来就要给她推荐商品A。此外,用户信息比较少,可能不够50个怎么办?从热门商品item_Top50中补齐。
详细:读购买信息,存在features里面-->读商品信息,存在items里面,只保留商品id和种类id两列-->把商品种类id添加到购买信息features中-->统计每个商品有多少个用户买,item_statistc包括两列商品id和数量-->item_statistc和item进行合并,取前50,命名为item_Top50,最热的50个商品-->合并,之后的item_Top50如下图: