【项目】用户行为预测

文章讲述了作者参与阿里天池用户行为预测比赛的过程,涉及数据集使用(如item.csv和user.csv),通过分析用户历史行为(如购买、收藏等)和热门商品,实现个性化商品推荐。作者展示了如何读取数据、处理缺失值以及构建用户行为特征,最终生成用户Top50商品推荐列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍

我目前做的内容还没结束,不方便说,但是也是一个用户行为预测,需要自己找数据集,找方法。然后我们找到了一个类似的,先看看别人怎么做的。下载了阿里天池比赛的数据集,然后论坛中有人放了自己的代码,我自己改了改能跑起来。

二、链接

阿里天池的比赛:CIKM 2019 EComm AI:用户行为预测_算法大赛_天池大赛-阿里云天池的赛制​​​​​​

代码:用户行为预测,基于历史行为+热门商品补齐 成绩0.04几_天池notebook-阿里云天池​​​​​​

三、数据集

item.csv:商品id,商品一级类目id,商品叶子类目id,商品品牌id。
user.csv:用户id,性别,年龄,【1~9】的数
user_behavior.cs:用户id,商品id,行为,【数据集说明给的是日期,但是很明显不是,可能是时间戳】

submit.csv:自己建的,里面是空的,把最后的结果存里面

四、代码

介绍:根据商品信息(item.csv)、用户信息(user.csv)和购买信息(user_behavior.cs)给每个用户推荐50个商品。大概思路就是:给一个用户推荐商品,读用户的历史信息,有加购物车、收藏、购买、点击四种购物行为,给他们赋值,然后计算总和。比如用户把商品A加购物车了还点击了,接下来就要给她推荐商品A。此外,用户信息比较少,可能不够50个怎么办?从热门商品item_Top50中补齐。

详细:读购买信息,存在features里面-->读商品信息,存在items里面,只保留商品id和种类id两列-->把商品种类id添加到购买信息features中-->统计每个商品有多少个用户买,item_statistc包括两列商品id和数量-->item_statistc和item进行合并,取前50,命名为item_Top50,最热的50个商品-->合并,之后的item_Top50如下图:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值