【环境配置】Windows10环境下安装TensorFlow2.0.0全流程

前言

TensorFlow 是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展,并使开发者能够轻松地构建和部署由机器学习提供支持的应用。为了能够在自己的电脑上实现机器学习算法,自己首次尝试安装TensorFlow。本文记录了一下自己安装的流程及遇到问题和解决方法。

一、环境准备

我电脑中已经安装的软件和环境:

  • PyCharm Professional 2020.02
  • Python3.7(64-bit)
  • Anaconda3

二、安装TensorFlow

2.1发现问题

自己在首次尝试时,想要通过最基础的conda指令进行安装,在Anaconda Prompt中输入如下代码(user为电脑用户名,每个人可能不一样):

(base) C:\Users\user> conda install tensorflow

安装虽然显示成功,但在运行一段测试代码后,程序却始终报一个相同的错误:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2。虽然报错,但返回值却是0。

报错
我在stackoverflow上查找到了该错误:stackoverflow链接,如下图所示:

stackoverflow截图
查找到的原因是:由于我的电脑没有使用GPU,因此问题出在我的TensorFlow和CPU不兼容,也就是版本不匹配。


2.2 解决方法一:屏蔽警告

前文所附的stackoverflow链接中给出了一种解决办法:

If you have a GPU, you shouldn’t care about AVX support, because most expensive ops will be dispatched on a GPU device (unless explicitly set not to). In this case, you can simply ignore this warning.

通过在运行的Python程序开头处输入如下代码进行屏蔽:

# Just disables the warning, doesn't enable AVX/FMA
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

这个方法对于没有GPU的环境来说也可以生效,但这个方法个人觉得对于没有GPU的环境来说是治标不治本。于是探究了一下,成功通过方法二解决了这一问题:


2.3 解决方法二:安装适配版本

  • 第一步:在Anaconda中创建虚拟环境,命名为TF(此处名字可自定义),python版本指定为3.6(虽然我电脑上用的是3.7,但保险起见向下降了一个版本,如果读者想要使用3.7版本的话可以尝试一下),这样避免出错崩溃影响到其他程序操作,在Anaconda Prompt中输入如下代码:
(base) C:\Users\user> conda create -n TF python=3.6

当弹出 :Proceed ([y]/n)? 时,输入y,回车

完成后就创建好了一个名叫TF的Python3.6虚拟环境,


  • 第二步:进入TF环境
    在Anaconda Prompt中输入如下代码,进入新建的虚拟环境:
(base) C:\Users\user> conda activate TF

进入后可以看到如下形式的命令行。

(TF) C:\Users\user>

我们可以发现:“TF”在之前路径前面,表示进入了这个环境。如果想要退出,可以使用
conda deactive指令退出环境。


  • 第三步:安装TensorFlow2.0的CPU版本。
(TF) C:\Users\user> pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn tensorflow==2.0.0

代码中的-i参数是为了指定下载的镜像源,这里采用国内清华源,可以提高下载速度。


  • 第四步:在PyCharm中配置该虚拟环境的编译器
  1. 打开PyCharm,点击顶部菜单栏中的File,在下拉菜单中选择Setting…

在这里插入图片描述

  1. 新增Interpreter

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  1. 测试TensorFlow
    如果安装和设置都正常完成,我们可以打一段代码进行测试,这里使用的是TensorFlow官网上的初学者的 TensorFlow 2.0 教程中所附的代码:
# 将 TensorFlow 载入你的程序:
import tensorflow as tf

# 载入并准备好 MNIST 数据集。将样本从整数转换为浮点数:
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数:
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练并验证模型
model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)

输入完成后,点击运行(或Alt + Shift + X),可以看到如下输出:

在这里插入图片描述
至此也就说明TensorFlow2.0已经被成功安装,并且没有出现文章开头所显示的错误,问题成功解决。


三、安装过程中遇到的其他问题

  1. 用conda安装包时出现The environment is inconsistent, please check the package plan carefully,无法继续安装。
  • 出现原因:部分包之间的版本不匹配
  • 解决办法stackoverflow
(TF) C:\Users\user> conda activate base
(base) C:\Users\user> conda install anaconda

  1. 安装过程中报错:An unexpected error has occurred. Conda has prepared the above report.
  • 出现原因:使用了国内镜像地址,从官网安装某个包时可能出Bug
  • 解决办法:镜像地址文件都是存放在C:\Users\(用户名)下的.condarc文件,如果没找到该文件,则勾选一下隐藏的项目,即可看到。找到该文件后删除它即可解决。
  • 完成之前报错的安装指令后,如果仍需要该文件,可以在Anaconda Prompt中输入conda config --set show_channel_urls yes指令来再次生成该文件。
    在这里插入图片描述

看完有用的话记得一键三连哦! ~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MomentNi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值