1、底层配置
我拿到的板子已经安装好了Ubuntu 18.04 , 以及cuda, tensorrt等。具体我安装了jtop(不要相信nvidia-smi, 具体在nvidia社区里已经回答了,这里简单说就是nvidia-smi适用于桌面型CPI, 而Jetson是CPIe,压根不支持nvidia-smi,所以就不要在这个查看版本信息的指令上浪费时间了)。具体我的适配信息我贴图如下:

2、这里正式开始
1> 先装miniconda,方便环境管理,不要嫌麻烦,如果后续有别的程序要适配会非常方便。
这里就仿照在台式机上的方式就行。可以参考我之前的文章。我在jetson上安装的是miniconda,
放在/home/下,然后利用指令安装:
bash miniconda文件(根据你的硬件找适配的).sh
2> 创建虚拟环境
conda create -n 环境名 python=版本(我用的是Jetson TX2 NX, 只能支持python3.6)
conda activate 环境名
3> 安装必要的包
上一步已经进到这个环境了
pip install nvidia-pyindex (注意,“-”之间没有空格,这是ubuntu的特点)
pip install nvidia-tensorrt==版本号(由于我的系统已经在底层带了,所以看情况)
这里由于ubuntu系统烧注时已经自带了适配的tensorrt,但这里我们是在conda中创建了虚拟环境下使用,所以要添加环境变量。我在使用的时候试用了两种方式,但第一种方式前一天晚上测试合适,第二天就导入失败了,所以我又找了第二种方式,都记录下来方便参考:
&n

最低0.47元/天 解锁文章
5728

被折叠的 条评论
为什么被折叠?



