算法训练营Day2

#数组  #Java  #长度最小的子串

开源学习资料

Feeling and experiences:

有序数组的平方:力扣题目链接

​​​​该题读一遍题目以后,发现这题这么简单?

直接入手,写完就解答错误了......题目中存在一些细节,比如非递减序列,想了想不就是升序吗?但是题目想提示你的其实就是这个数组中存在负数的情况。

一个负数越小,意味着它的平方也就越大,对应着在结果数组的位置就越靠后(因为要求升序排列)

注意到这个点之后,我第一个想到的方法就是先循环遍历,把数组中每个数的平方算出来,再给它们进行排序。写出来的代码看起来很简单,但时间复杂度上却是O(n*logn,基与快速排序)。

那么要优化它的时间效率,我考虑到了双指针的方法,以下是我的解题思路与代码:

class Solution {
    public int[] sortedSquares(int[] nums) {
    //利用双指针的解法
    //为什么会想到用双指针?因为本题的关键一点在于数组中存在负数,那么负数的平方可能会很大
    //也就是说,在这个非递减排序中,越靠前的负数也就越小,它的平方也就越大

    //创建一个数组来记录结果
    int []res = new int[nums.length];
    //设置一个末尾指针
    int end = nums.length-1;
    //进入for循环
    for(int i =0,j=nums.length-1;i<=j;){
        //i,j就分别代表要处理的数,这里先不进行i++与j--操作
        if(nums[i]*nums[i]>=nums[j]*nums[j]){
            //也就是说当前这个数的平方比尾指针指向的数的平方要大,那我们就把该数平方放到res数组中(end指向的位置)
            res[end--] = nums[i]*nums[i];
            //这个时候才让i++ (因为i这个位置的数已经处理过了)
            i++;
        }
        else{
            //也就是nums[i]的平方比nums[end]小
            //本来这个数的平方都更小,那说明它的原数也更小,所以我们把end这个位置指向的数的平方添加到res数组中
            res[end--] = nums[j]*nums[j];
            //这个时候让j-- 
            j--;
        }
    }
    return res;
    }
}

长度最小的子数组:力扣题目链接

最开始直接入手暴力解法:

但是写完后测试,发现了里面的错误,噢~原来题目要求的是大于等于target(而且我在同一次迭代中两次将nums[j]添加到了sum),先把这次的错误记录下来。(大家也可看看这个存在的逻辑错误)

迅速看卡哥的暴力解法,发现了里面的妙处(虽然是暴力解法,但是也有很多值得思考的地方)

以下是正确的暴力解法思路与代码:

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
    int minlen = Integer.MAX_VALUE; //记录最小的子数组长度
    int sum; //用来记录各数之和
    for(int i =0;i<nums.length;i++){
       sum = 0;
        for(int j =i;j<nums.length;j++){
            sum += nums[j];
            if(sum>=target){
                sum+=nums[j];
                //如果和已经大于等于target了,则更新minlen的值
                minlen = Math.min(minlen,j-i+1);
                break; //更新完就退出内循环
            }
        }
    }
        return (minlen == Integer.MAX_VALUE)?0:minlen;
    }
    
    }

但是提交测试后就发现,已经超过时间限制了。(时间复杂度为O(n^2))

所以我们还得换一种方法

在卡哥的讲解视频中,运用到了滑动窗口的思路。

我在初次接触到滑动窗口时,最开始没有解读到精髓,一下就认为这和暴力循环不是一样的思路吗?sum>=target了,初始位置就后移一个。

后来我琢磨出来,它和暴力循环的思路,像但又不像,它的本质确实也是当sum>=target了,初始位置后移,但是最有意思的就是初始位置的移动不依赖另外一个指针的移动,也就是说,它们是相互配合的关系,而不是像双层for循环一样,我外循环指针要移动必须要等内循环执行完,这样效率就太慢了。

这里放一张代码随想录的图,一眼就能直观的看出:

精髓就在于这个while循环! (注意:不要以为for里放一个while就以为是O(n^2)啊, 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。

以下是我的理解与代码:

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
    //利用滑动窗口
    //首先要提的就是滑动窗口的精髓在于起始位置的移动
    int res = Integer.MAX_VALUE; //同理,还是先用一个最大值便于后续的更新
    int sum =0;
    int i =0;
    for(int j =0;j<nums.length;j++){
        sum+=nums[j];
        while(sum>=target){
            //如果target大于等于目标值了,此时我们就要更新res
            res = Math.min(res,j-i+1);
            //然后初始位置向后移动,更新初始位置与sum
            sum -= nums[i++]; //sum = sum - 当前初始位置的值,初始位置再后移动一个
            //这样就做到了如果我的sum只要大于等于目标值,我就一直在while循环中更新我的初始位置,出了while循环又可以更新末尾位置,这样效率就提高了
        }
    }
   return (res == Integer.MAX_VALUE)?0:res;
    }
}

螺旋矩阵II:力扣题目链接

这是一道模拟题,不涉及到具体的算法。

直接上代码:

class Solution {
    public int[][] generateMatrix(int n) {
        int loop = 0;  // 控制循环次数
        int[][] res = new int[n][n];
        int start = 0;  // 每次循环的开始点(start, start)
        int count = 1;  // 定义填充数字
        int i, j;

        while (loop++ < n / 2) { // 判断边界后,loop从1开始
            // 模拟上侧从左到右
            for (j = start; j < n - loop; j++) {
                res[start][j] = count++;
            }

            // 模拟右侧从上到下
            for (i = start; i < n - loop; i++) {
                res[i][j] = count++;
            }

            // 模拟下侧从右到左
            for (; j >= loop; j--) {
                res[i][j] = count++;
            }

            // 模拟左侧从下到上
            for (; i >= loop; i--) {
                res[i][j] = count++;
            }
            start++;
        }

        if (n % 2 == 1) {
            res[start][start] = count;
        }

        return res;
    }
}

熟悉这个模拟的过程,忘了就看看卡哥的讲解视频和图解——视频链接

 

模拟顺时针画矩阵的过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

回顾一下二分涉及到的循环不变量!

“少年向来不识天高地厚,放眼处,皆是才高八斗

虽是自命风流,倒也坦诚无忧

谦和又狂妄,骄傲又坦然!”

Fighting!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值