Add Digits
作者:money
标签:leetcode,C++
问题:
Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38, the process is like: 3 + 8 = 11, 1 + 1 = 2. Since 2 has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
问题分析:
给定一个非负整数,不断对自身数字相加,直至只有一个数字,通过简单循环即可实现,但如果需要O(1)复杂度,并不使用循环,需要找到其中的规律,见附录。
实现代码:
#include <iostream>
// submit these code to leetcode
// begin
class Solution {
public:
int addDigits(int num) {
int sum;
sum=0;
while(num>0)
{
sum=num%10+sum;
num=num/10;
}
if(sum>=10)
{sum = addDigits(sum);}
return sum;
}
};
// end
// submit these code to leetcode
int main(){
Solution s;
int a=0;
std::cout<<"input tow int"<<std::endl;
std::cin>>a;
std::cout<<s.addDigits(a)<<std::endl;
return 0;
}
杂录:
优化解题方法
另一个方法比较简单,可以举例说明一下。假设输入的数字是一个5位数字num,则num的各位分别为a、b、c、d、e。
有如下关系:num = a * 10000 + b * 1000 + c * 100 + d * 10 + e
即:num = (a + b + c + d + e) + (a * 9999 + b * 999 + c * 99 + d * 9)
因为 a * 9999 + b * 999 + c * 99 + d * 9 一定可以被9整除,因此num模除9的结果与 a + b + c + d + e 模除9的结果是一样的。
对数字 a + b + c + d + e 反复执行同类操作,最后的结果就是一个 1-9 的数字加上一串数字,最左边的数字是 1-9 之间的,右侧的数字永远都是可以被9整除的。
这道题最后的目标,就是不断将各位相加,相加到最后,当结果小于10时返回。因为最后结果在1-9之间,得到9之后将不会再对各位进行相加,因此不会出现结果为0的情况。因为 (x + y) % z = (x % z + y % z) % z,又因为 x % z % z = x % z,因此结果为 (num - 1) % 9 + 1,只模除9一次,并将模除后的结果加一返回。
实现代码
class Solution {
public:
int addDigits(int num) {
return (num-1)%9+1;
}
};
参考:
《LeetCode:Add Digits - 非负整数各位相加》http://my.oschina.net/Tsybius2014/blog/497645