LabelMe使用

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/qq_31347869/article/details/91180129

LabelMe 可用于实例分割,语义分割,目标检测,分类任务的数据集标注工作。

在线标注版本:http://labelme2.csail.mit.edu/Release3.0/index.php?message=1
python 版本:https://github.com/wkentaro/labelme

官方文档:

分类标注:Classification
目标检测标注:Object Detection
语义分割标注:Semantic Segmentation
实例分割标注:Instance Segmentation
视频标注:Video Annotation
其他形式标注:LabelMe Primitives

python版本使用

使用环境:Anaconda
python版本:2.7 / 3.6

1. 安装

# python2.7版本安装
conda create --name=labelme python=2.7
source activate labelme
# conda install -c conda-forge pyside2
conda install pyqt
pip install labelme
# if you'd like to use the latest version. run below:
# pip install git+https://github.com/wkentaro/labelme.git

# python3.6版本安装
conda create --name=labelme python=3.6
source activate labelme
# conda install -c conda-forge pyside2
# conda install pyqt
pip install pyqt5 # pyqt5 can be installed via pip on python3
pip install labelme

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

2. 使用

# 查看labelme使用方法
labelme --help

(labelme) @supermicro:~$ labelme --help
usage: labelme [-h] [--version] [--reset-config]
[--logger-level {debug,info,warning,fatal,error}]
[--output OUTPUT] [--config CONFIG_FILE] [--nodata]
[--autosave] [--nosortlabels] [--flags FLAGS]
[--labelflags LABEL_FLAGS] [--labels LABELS]
[--validatelabel {exact,instance}] [--keep-prev]
[--epsilon EPSILON]
[filename]

positional arguments:
filename image or label filename

optional arguments:
-h, --help show this help message and exit
--version, -V show version
--reset-config reset qt config
--logger-level {debug,info,warning,fatal,error}
logger level
--output OUTPUT, -O OUTPUT, -o OUTPUT
output file or directory (if it ends with .json it is
recognized as file, else as directory)
--config CONFIG_FILE config file (default: /home/zyy/.labelmerc)
--nodata stop storing image data to JSON file
--autosave auto save
--nosortlabels stop sorting labels
--flags FLAGS comma separated list of flags OR file containing flags
--labelflags LABEL_FLAGS
yaml string of label specific flags OR file containing
json string of label specific flags (ex. {person-\d+:
[male, tall], dog-\d+: [black, brown, white], .*:
[occluded]})
--labels LABELS comma separated list of labels OR file containing
labels
--validatelabel {exact,instance}
label validation types
--keep-prev keep annotation of previous frame
--epsilon EPSILON epsilon to find nearest vertex on canvas

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • -h–help 显示帮助信息
  • -V--version 显示 labelme 版本号
  • --output:指定输出标注文件的保存路径,如果路径以 .json 结尾,则保存为一个 .json 文件,否则默认保存为文件夹形式
  • --labels:用于指定标签名称,可以是用逗号分隔的 label list,也可以是包含标签的 txt 文件
  • --nodata:不保存图像到 JSON 文件

3. 分割任务标注示例

终端直接输入:

# 直接打开labelme
labelme

 
 
  • 1
  • 2
  • open:打开某一张图片
  • openDir:打开某一文件夹,加载其目录下的所有图片

通过 open 读取图片,选择 create polygons 手动进行勾画,全部完成后保存为 json 文件(在当前目录下):
在这里插入图片描述
右键单击可以选择不同的标注方式,比如 polygons 用于分割,rectangle 用于检测。

如果是实例分割,一个图像中有多只猫,标签的命名规则为:cat1、cat2 …,如果是语义分割就不用区分了。
在这里插入图片描述
labelme 可以进行多类别标注,Label List 显示当前已有的类别,Polygon Labels 显示当前已标注的区域,通过勾选 Polygon Labels 前面的 “√”,可以选择显示特定的分割区域:
在这里插入图片描述
要得到 label 文件,需要将 json 转换为单通道的 image,终端输入命令:

# 进入json文件保存目录
cd /path/to/your/jsonfile
# 转换
labelme_json_to_dataset <文件名>.json
# 比如
labelme_json_to_dataset cat.1.json

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

将在当前目录下得到一个文件夹 cat_1_json,包括四个文件:

  • img.png:原始图像
  • label.png:标签,uint8
  • label_viz.png:可视化的带标签图像
  • label_names.txt:记录了标签的名称

img.png
img.png
label.png:
label.png
label_viz.png:
label_viz.png

4. 其他说明

(1)启动 labelme 的方式:

# 直接打开labelme
labelme

# 打开某个文件夹,加载该文件夹下及其子文件夹下的所有图片
labelme path/to/imgfile/

# 直接打开指定的图片
labelme cat.1.jpg

# 标注保存为json文件同时自动关闭gui窗口
labelme cat.1.jpg -O cat.1.jpg.json

# 指定label list
labelme cat.1.jpg
--labels cat,eye
# 或者传入文件形式的label list
--labels labels.txt

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

(2)将 JSON 文件转换为 image 和 label

# 在当前目录下生成一个文件夹cat_1_json
labelme_json_to_dataset cat.1.json

# 指定生成文件夹的名字为cat1
labelme_json_to_dataset cat.1.json -o cat1

  • 1
  • 2
  • 3
  • 4
  • 5

(3)可视化 json 文件:

# 终端输入
labelme_draw_json cat.1.json

 
 
  • 1
  • 2

在这里插入图片描述

5. 加载标签png

label.png 用 scipy.misc.imread 或者 skimage.io.imread 读取可能会出错,推荐用 PIL.Image.open 读取:

>>> import numpy as np
>>> import PIL.Image

>>> label_png = ‘imgs/cat1/label.png’ # 设置标签文件路径
>>> lbl = np.asarray(PIL.Image.open(label_png))
>>> print(lbl.dtype)
dtype(‘uint8’)
>>> np.unique(lbl)
array([0, 1, 2], dtype=uint8)
>>> lbl.shape
(280, 300)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

查看 label.png:

# 终端输入
labelme_draw_label_png imgs/cat1/label.png

 
 
  • 1
  • 2

在这里插入图片描述

6. 生成VOC格式的标签数据

在下载的 labelme 的 zip 包里,路径 labelme/examples/semantic_segmentation 下,data_annotated 是原图和对应的 JSON 文件,data_dataset_voc 是 voc 格式的输出结果,labelme2voc.py 是转换的主函数,labels.txt 是标签类别。

1)文件组织形式如下:

  • *_annotated 存放原图和已经生成的对应 JSON 文件
  • 将 labelme 工程文件下的 labelme2voc.py 复制过来
  • 自己写一个 *.txt 文件,内容是分割的标签,最前面加上 __ignore___background_
    labels.txt 文件内容
    文件组织格式
    文件组织格式

2)转换为voc数据格式:

# 终端输入
./labelme2voc.py [图像路径] [voc文件夹名称] --labels [label list]

# 比如
./labelme2voc.py cat_annotated cat_dataset_voc --labels labels.txt

  • 1
  • 2
  • 3
  • 4
  • 5

在当前目录下自动生成 cat_dataset_voc 文件夹(转换前确保不要有重名文件夹,否则会报错)
在这里插入图片描述
在这里插入图片描述

cat_dataset_voc 文件夹内容:
在这里插入图片描述
转换为 COCO 数据格式,同样的套路:

./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt

 
 
  • 1
                                </div>
            <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-e44c3c0e64.css" rel="stylesheet">
                </div>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值