pandas 的cut详解

本文详细介绍了Python中用于数据分组的cut和等分数据的qcut函数,讨论了它们的参数用法,如data、bins、labels等,并探讨了在数据分析中如何根据需求进行区间划分和自定义标签。通过对这两个函数的理解,读者能够更好地掌握数据预处理中的分组操作。
摘要由CSDN通过智能技术生成

可以将数据进行分组

cut (data, bins, right=False,labels=None,retbins=False,precision=3,include_lowest=False, duplicates=‘raise’)

  • data: 数据
  • bins: 分组的个数
  • right: 是否包含右边,默认包含左边
  • labels: 自定义分组标签
  • retbins: 是否返回分组的列表
  • precision: 精度,保留区间小数点的位数,默认为3.
  • include_lowest: 左区间开或闭,默认闭
  • duplicates: 是否允许重复区间。有两种选择:raise:不允许,drop:允许。

qcut,不同在于将分组等分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东哥爱编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值