数据如图所示
生成未下单间隔列
df['未下单间隔']=df.最近下单时间.map(lambda x :\
round((pd.to_datetime('2018-04-08')-pd.to_datetime(x[:10])).total_seconds()/(24*60*60)))
df['未下单分类']=pd.cut(df.未下单间隔,bins=[-1,60,90,1000000],labels=['60天内','60-90天','90天以上'])
df['下单数量分类']=pd.cut(df.下单者数量,bins=[9,14,19,10000000],labels=['10-15单','15-20单','20单以上'])
df.groupby(['未下单分类','下单数量分类']).count()
结果如图所示
这样我就能很容易的找出90天以上未下单的,下单数量在10-15单的有多少人了