pandas cut函数快速自定义分类

数据如图所示


生成未下单间隔列

df['未下单间隔']=df.最近下单时间.map(lambda x :\

                          round((pd.to_datetime('2018-04-08')-pd.to_datetime(x[:10])).total_seconds()/(24*60*60)))

df['未下单分类']=pd.cut(df.未下单间隔,bins=[-1,60,90,1000000],labels=['60天内','60-90天','90天以上'])

df['下单数量分类']=pd.cut(df.下单者数量,bins=[9,14,19,10000000],labels=['10-15单','15-20单','20单以上'])

df.groupby(['未下单分类','下单数量分类']).count()

结果如图所示


这样我就能很容易的找出90天以上未下单的,下单数量在10-15单的有多少人了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值