【GESP真题解析】第 19 集 GESP 二级 2025 年 3 月编程题 1:等差矩阵

image.png

大家好,我是莫小特。
这篇文章给大家分享 GESP 二级 2025 年 3 月编程题第 1 题:等差矩阵。

题目链接

洛谷链接:B4259 等差矩阵

image.png

一、完成输入

根据题意,一行,两个正整数 n,m。
n 和 m的数据范围:对于所有测试点,保证 1≤n,m≤50。
使用 int 就够了。

int y,m,d,h,k;
cin>>y>>m>>d>>h>>k;

输入部分完成后,我们来分析题目意思。

二、分析题意

根据题目描述,小 A 想构造一个 n 行 m 列的矩阵,使得矩阵的每一行与每一列均是等差数列,这个看不出什么意思,可以代入到样例输入和样例输出中。

image.png

再根据题目中说明的:在矩阵的第 i 行第 j 列填入整数 i×j,得到的矩阵能满足要求。

所以使用二维数组解决,数据范围:1≤n,m≤50

int x[55][55];

第 i 行第 j 列填入整数 i×j,转为代码:

x[i][j]=i*j;

使用 for 循环嵌套,遍历 i 和 j 的值。

for(int i=1;i<=n;i++)
{
	for(int j=1;j<=m;j++)
	{
		x[i][j]=i*j;
	}
}

最后完成输出即可。

for(int i=1;i<=n;i++)
{
	for(int j=1;j<=m;j++)
	{
		cout<<x[i][j]<<" ";	
	}	
	cout<<"\n";
}

三、验证数据

提交到网站中,通过!

image.png

四、完整代码

完整代码如下:

#include <iostream>
using namespace std;
int x[55][55];
int main()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			x[i][j]=i*j;
		}
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			cout<<x[i][j]<<" ";	
		}	
		cout<<endl;
	} 
}
目前提供的引用内容并未涉及20253GESP 5级考试的具体题与解。然而,可以推测该级别的考试可能涵盖了更高级别的编程概念和技术细节,例如但不限于算法设计、复杂的数据结构应用以及面向对象编程的核心原理。 以下是基于现有知识体系对于此类考试可能覆盖的内容范围及其解答方式的一个假设性分: ### 可能的考点一:动态规划 #### 题目示例: 给定一个数组 `arr` 和目标值 `target`,求是否存在子使得其和等于 `target`。 ```cpp bool canPartition(vector<int>& nums, int target) { vector<bool> dp(target + 1, false); dp[0] = true; for(auto num : nums){ for(int j=target; j>=num; --j){ dp[j] |= dp[j-num]; } } return dp[target]; } ``` 此代码片段展示了如何利用布尔类型的动态规划表来解决特定条件下的合划分问题[^自定义]. ### 可能的考点二:图论基础 #### 题目示例: 实现广度优先搜索(BFS),用于在一个无向图中找到最短路径长度。 ```cpp int shortestPathLength(vector<vector<int>>& graph, int start, int end){ queue<pair<int,int>> q; vector<bool> visited(graph.size(),false); q.push({start,0}); while(!q.empty()){ auto [node,dist]=q.front();q.pop(); if(node==end)return dist; if(visited[node])continue; visited[node]=true; for(auto neighbor:graph[node]){ if(!visited[neighbor]) q.push({neighbor,dist+1}); } } return -1;//如果无法到达终点返回-1表示不可达 } ``` 上述函数通过队列实现了标准的BFS逻辑,在探索过程中记录节点访问状态并更新距离信息[^自定义]. ### § 1. 动态规划中的状态转移方程是如何构建的? 2. 广度优先搜索相较于深度优先搜索有哪些优势和劣势? 3. 如何优化大规模稀疏矩阵上的图遍历操作效率? 4. 在实际开发场景下,我们通常会选择哪些库或者框架辅助完成复杂的算法模型搭建工作? 5. 如果遇到内存限制条件下处理超大尺寸数据的情况,应该采取何种策略调整程序运行模式以适应资源约束环境?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员莫小特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值