【自然语言处理五】Transformer模型

本文介绍了Transformer模型,作为自然语言处理中的重要模型,其利用Self-Attention机制避免了RNN的顺序限制,允许并行计算,提升了训练效率。同时,文章详细讲解了Transformer的Encoder部分在PyTorch中的实现,并简要提到了Decoder部分。
摘要由CSDN通过智能技术生成

1.transformer模型

Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于 Transformer。Transformer 模型使用了 Self-Attention 机制,不采用 RNN 的顺序结构,使得模型可以并行化训练,而且能够拥有全局信息。

在这里插入图片描述

2.encoder部分实现(pytorch)

class EncoderLayer(nn.Module):
    def __init__(self, hidden_size, filter_size, n_head, pre_lnorm, device, dropout):
        super(EncoderLayer, self).__init__()
        # self-attention part
        self.self_attn = MultiHeadAttention(hidden_size, n_head, device)
        self.self_attn_norm = nn.LayerNorm(hidden_size)

        # feed forward network part
        self.pff = PositionwiseFeedForward(hidden_size, filter_size, dropout)
        self.pff_norm = nn.LayerNorm(hidden_size)

        self.pre_lnorm = pre_lnorm

    def forward(self, src, src_mask):
        if self.pre_lnorm:
            pre = self.self_attn_norm(src)
            # residual connection
            src = src + self.self_attn(pre, pre, pre, src_mask)

            pre = self.pff_norm(src)
            src = src + self.pff(pre)  # residual connection
        else:
            # residual connection + layerNorm
            src = self.self_attn_norm(
                src + self.self_attn(src, src, src, src_mask))
            # residual connection + layerNorm
            src = self.pff_norm(src + self.pff(src))

        return src


class Encoder(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值