53、提升基于PCA的相关性聚类算法鲁棒性的通用框架

提升基于PCA的相关性聚类算法鲁棒性的通用框架

1. 引言

在许多应用中,在任意定向子空间中寻找聚类是一项重要的数据挖掘任务。在高维数据中,由于高维特征空间的一些特性,直接寻找聚类往往比较困难,但通常可以在原始数据空间的任意定向子空间中找到聚类。子空间聚类的点位于一个共同的低维超平面上,并且在属性的一个子集之间表现出共同的相关性,这个任务也被称为相关性聚类。

大多数相关性聚类算法使用主成分分析(PCA)来确定聚类的正确子空间。然而,PCA对异常值非常敏感。如果应用PCA的局部邻域包含不属于该聚类的噪声点,子空间确定过程就会被误导。高维空间存在“维度诅咒”问题,随着数据维度的增加,“接近性”“距离”或“局部邻域”等概念变得不那么有意义,导致更多的异常值不可避免地出现在邻域对象集中。因此,在高维数据空间的相关性聚类中成功应用PCA,可能需要更复杂的选择代表性邻域集的技术。

2. 相关工作
  • ORCLUS :一种类似K-means的方法。首先选择$K_c > K$个种子,根据基于相应聚类的特征系统的距离函数将数据库对象分配给这些种子,该距离函数仅评估沿小特征向量的距离。特征系统会根据更新后的聚类的当前状态进行迭代调整,通过合并最接近的聚类对,直到达到用户指定的聚类数量$K$。
  • 4C :基于密度的聚类范式。聚类数量不是预先确定的,聚类从一个种子开始生长,只要满足密度标准。密度标准是一个点的邻域内所需的最小点数,邻域基于从两点的特征系统计算的距离矩阵确定。
  • HiCO :一种层次化方法,根据
三维建模技术借助先进的图像处理手段,将二维影像转化为立体空间数据。在多种实现路径中,双摄像头视觉方案与编码光投影技术具有代表性。前者通过布置两个成像单元从不同方位采集画面,依据视差原理与空间几何关系推算深度数据;后者则向目标表面投射特定光栅,通过解析光栅形变反推三维轮廓。相位偏移法作为光栅技术的重要分支,采用多步渐进式光场调制策略,通过记录连续相位变化获取亚像素级三维信息。同步采用的互补二进制编码机制,通过优化光强分布模式有效解决相位跳变问题,显著提升重建数据的连续性。 成像系统的参数标定是三维数据生成的基础环节,需通过专用算法确定镜头焦距、像主点坐标及光学畸变系数等核心参数。立体校正则依据双相机空间几何关系,对采集图像进行投影变换,使对应像点分布于同一水平扫描线上,大幅降低立体匹配复杂度。在光栅系统中,相位对齐技术通过建立像素级相位映射关系,将二维相位场转换为三维坐标;而在立体视觉中,视差分析通过比对双视图对应像素偏移量,构建深度映射矩阵。最终通过点云融合算法,将离散空间坐标整合为连续曲面模型,该技术体系在工业检测、数字娱乐及沉浸式交互等领域具有重要应用价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
内容概要:本文围绕“风光制氢合成氨系统优化研究”展开,重点介绍了基于Matlab代码实现的并网与离网模式下风能、光能耦合制氢进而合成氨的系统容量配置与调度优化方法。研究涵盖可再生能源波动性、系统能量转换效率、设备容量规划及运行调度策略等关键问题,通过数学建模与优化算法(如智能优化、模型预测控制等)实现系统经济性与稳定性的平衡。文中多次提及“复现”字样,表明部分内容旨在还原已有研究成果,并提供完整的代码资源支持仿真验证。同时,文档列举了大量相关研究主题,形成一个涵盖电力系统、综合能源、状态估计、机器学习等多个方向的技术资源集合。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及工程技术人员,熟悉Matlab/Simulink环境者更佳;适合从事新能风光制氢合成氨系统优化研究(Matlab代码实现)源系统建模与优化研究的专业人士。; 使用场景及目标:①开展风光耦合制氢及合成氨系统的容量规划与运行调度研究;②复现已发表论文中的优化模型与算法;③构建综合能源系统仿真平台,提升科研效率与代码实践能力。; 其他说明:文档附带百度网盘链接,提供YALMIP工具包及其他完整资源下载,便于读者直接调用求解器进行优化计算,建议结合实际需求选择相应案例进行学习与拓展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值