最大熵模型

最大熵模型是一种在特征条件下保留最大不确定性的概率分布选择方法。它基于熵的概念,熵值越大表示随机变量的不确定性越高。当仅掌握部分关于未知分布的知识时,最大熵模型会选择熵最大的概率分布作为最优解。在学习过程中,模型通过满足特定特征函数的期望值与经验分布相等的约束条件来优化。最大熵模型通常用于解决如自然语言处理中的分类问题。
摘要由CSDN通过智能技术生成

1、熵:随机变量不确定性的度量,不确定性越大,熵值越大;若随机变量退化为定值,熵为0。均匀分布是最不确定的分布。

假设离散随机变量x的概率分布为p(x),则其熵为:,其中0\leqslantH(p)\leqslantlog\left | x \right |

其中|X|是X的取值个数.当且仅当X的分布是均匀分布时右边等号成立, 也就是说, 当X服从均匀分布时, 熵最大。

2、最大熵:保留最大的不确定性(让熵达到最大)

3、最大熵模型的原理:在特征条件限制下,提取最优的概率分布(在只掌握关于未知分布的部分知识时,应该选取符合这些知识但熵值最大的概率分布)

      给定一个训练数据集:T={(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值