Dynamic Programming

Those who cannot remember the past are condemned to repeat it


A DP is an algorithmic technique which is usually based on a recurrent formula and one (or some) starting states. A sub-solution of the problem is constructed from previously found ones. DP solutions have a polynomial complexity, which is more efficient than recursive function.

One main advantages of DP is that it can store the intermediate states for future use, which means it does not need to recompute some middle results like in the recursive function. So DP is much more efficient.

A small example is about Fibonacci numbers:

Fibonacci (n) = 1; if n = 0
Fibonacci (n) = 1; if n = 1
Fibonacci (n) = Fibonacci(n-1) + Fibonacci(n-2)

A code for pure recursion:

int fib (int n) {
    if (n < 2)
        return 1;
    return fib(n-1) + fib(n-2);
}

A code for DP:

void fib () {
    fibresult[0] = 1;
    fibresult[1] = 1;
    for (int i = 2; i<n; i++)
       fibresult[i] = fibresult[i-1] + fibresult[i-2];
}

Next, I will give a basic example and an elementary example for introduction

1. Coin Change (basis)

Question
Given a list of N coins, their values (V1, V2, … , VN), and the total sum S. Find the minimum number of coins the sum of which is S (we can use as many coins of one type as we want), or report that it’s not possible to select coins in such a way that they sum up to S.

Analysis
It’s a way to describe a situation, a sub-solution for the problem. For example a state would be the solution for sum i, where i≤S.
A smaller state than state i would be the solution for any sum j, where j

Set Min[i] equal to Infinity for all of i
Min[0]=0

For i = 1 to S
For j = 0 to N - 1
   If (Vj<=i AND Min[i-Vj]+1<Min[i])
   Then Min[i]=Min[i-Vj]+1

Output Min[S]

C++ code:

static int minCoins(int coins[], int m, int V)
    {
       // base case
       if (V == 0) return 0;

       // Initialize result
       int res = Integer.MAX_VALUE;

       // Try every coin that has smaller value than V
       for (int i=0; i<m; i++)
       {
         if (coins[i] <= V)
         {
             int sub_res = minCoins(coins, m, V-coins[i]);

             // Check for INT_MAX to avoid overflow and see if
             // result can minimized
             if (sub_res != Integer.MAX_VALUE && sub_res + 1 < res)
                res = sub_res + 1;
         }
       }
       return res;
    }

2. Longest non-decreasing sequence (Elementary)

To this point, very simple examples have been discussed. Now let’s see how to find a way for passing from one state to another, for harder problems. For that we will introduce a new term called recurrent relation, which makes a connection between a lower and a greater state.

Question
Given a sequence of N numbers – A[1] , A[2] , …, A[N] . Find the length of the longest non-decreasing sequence.

As described above we must first find how to define a “state” which represents a sub-problem and thus we have to find a solution for it. Note that in most cases the states rely on lower states and are independent from greater states.

Concretely, we have to find the value of longest subsequences at every index point. Then largest LSi would be the longest subsequence in the given sequence. To begin LSi is assigned to be one since Ai is element of the sequence(Last element). Then for all j such that j

for i=0 to n-1
      LS[i]=1;
      for j=0 to i-1
       if (a[i] >  a[j] and LS[i]<LS[j]);
                LS[i] = LS[j]+1

 for i=0 to n-1
      if (largest < LS[i])
                largest = LS[i]

More examples on : Click me

weixin073智慧旅游平台开发微信小程序+ssm后端毕业码案例设计 1、资项目码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买代码。 1、资项目码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买代码。 1、资项目码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值