Hdu 4057 Rescue the Rabbit (AC自动机+状态压缩dp) - 2011 ACM-ICPC Dalian Regional Contest Problem G

本文回顾了2011 ACM-ICPC 大连区域赛的G题Rescue the Rabbit,这是一道结合了AC自动机和状态压缩DP的难题。作者介绍了AC自动机的基本应用,并探讨了如何利用这种技术解决长度为L的基因片段最大价值问题。题目要求在不超过10个基因片段和长度限制下,寻找不重复使用基因片段时的最大value值。通过状态压缩DP的方法,构建了一个二维加一维的动态规划数组,用于表示不同长度、结束状态和基因片段选择的组合。最终,在长度为L的dp数组中找到value值最大的状态作为答案。
摘要由CSDN通过智能技术生成

    大连的现场赛啊,快过去一年了。赛后知道这题是“AC自动机”的题目后就决定要研究研究这个神秘的AC自动机,最近把它给研究了一下,就把这个题翻出来再做做。发现还不是简单的AC自动机,还结合了“状态压缩dp”。好题,好题……

这次比赛居然有3道dp,悲剧的我们一道都木有想出来...大哭

还有两个dp是:The Last Puzzle(C题), Number String(E题)


题意:输入n(n<=10)个基因片段,且每个基因片段有一个value(|value|<=100)。
     问一个长度为L(L<=100)的基因可能的最大value值(多次出现的基因片段的value值不累加)。
样例:
3 8
ATG 4
TGC -2
ACCG 3
7
题解:由于最多只有10个基因片段,最多有2^10=1024种可能,所以可以结合AC自动机进行状态压缩dp.
      dp[i][j][k]表示当前长度为i,字符串结尾状态为j,压缩状态为k.
      压缩状态k看做二进制形式,第t位代表第t个基因片段是否被使用,
      dp[i][j][k]是bool类型的,为true时表示该种情况可能存在。
      最后在dp[L]中找value值最大的状态即可。


#include <cstdio>
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
#include <algorithm>

using namespace std;

class ACAutomaton
{
public:
    static const int MAX_N = 100 * 10 + 5;
    //最大结点数:模式串个数 X 模式串最大长度
    static const int CLD_NUM = 4;
    //从每个结点出发的最多边数,字符集Σ的大小,一般是26个字母

    int n;                      //trie树当前结点总数
    int id['z'+1];              //字母x对应的结点编号为id[x]
    int fail[MAX_N];            //fail指针
    int tag[MAX_N];             //本题中表示
    int trie[MAX_N][CLD_NUM];   //trie树,也就是goto函数

    void init()
    {
        id['A'] = 0;
        id['T'] = 1;
        id['C'] = 2;
        id['G'] = 3;
    }
    void reset()
    {
        memset(trie[0], -1, sizeof(trie[0]));
        tag[0] = 0;
        n = 1;
    }

    void add(char *s, int v)
    {
        int p = 0;
        while (*s)
        {
            int i = id[*s];
            if ( -1 == trie[p][i] )
            {
                memset(trie[n], -1, sizeof(trie[n]));
                tag[n] = 0;
                trie[p][i] = n++;
            }
            p = trie[p][i];
            s++;
        }
        tag[p] |= v; //因题而异
    }
    void construct()
    {
        queue<int> Q;
        fail[0] = 0;
        for (int i = 0; i < CLD_NUM; i++)
        {
            if ( -1 != trie[0][i] )
            {
                fail[trie[0][i]] = 0; //根结点下的第一层结点的fail指针都指向根结点
                Q.push( trie[0][i] );
            }
            else
                trie[0][i] = 0; //这个是阶段一中的第2步
        }
        while ( !Q.empty() )
        {
            int u = Q.front();
            Q.pop();
            for (int i = 0; i < CLD_NUM; i++)
            {
                int &v = trie[u][i];
                if ( -1 != v )
                {
                    Q.push( v );
                    fail[v] = trie[fail[u]][i];
                    tag[v] |= tag[fail[v]];      //这个不能丢
                }
                else
                    v = trie[fail[u]][i];
            }
        }
    }
}ac;

int  n, l, value[11];
bool dp[2][ACAutomaton::MAX_N][1<<10];

inline int getValue(int state)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        if ( state & (1 << i) )
            sum += value[i];
    return sum;
}

int main()
{
    char gene[125];

    ac.init();
    while (cin >> n >> l)
    {
        ac.reset();
        for (int i = 0; i < n; i++)
        {
            scanf("%s %d", gene, &value[i]);
            ac.add(gene, 1 << i);
        }
        ac.construct();

        int nState = 1 << n;
        int pre = 1, cur = 0;

        memset(dp[cur], 0, sizeof(dp[cur]));
        dp[cur][0][0] = true;
        for (int i = 0; i < l; i++)
        {
            swap(pre, cur);
            memset(dp[cur], 0, sizeof(dp[cur]));
            for (int j = 0; j < ac.n; j++)
            {
                for (int k = 0; k < 4; k++)
                {
                    int cld = ac.trie[j][k];
                    for (int t = 0; t < nState; t++)
                    {
                        if (dp[pre][j][t])
                            dp[cur][cld][t|ac.tag[cld]] = true;   //状态转移方程
                    }
                }
            }
        }

        int ans = -1;
        for (int k = 0; k < nState; k++)
            for (int j = 0; j < ac.n; j++)
                if (dp[cur][j][k])
                {
                    ans = max(ans, getValue(k));
                    break;     //第二重循环只用计算一次,因为每次都是计算的状态k,都一样
                }

        if (ans < 0)
            printf("No Rabbit after 2012!\n");
        else
            printf("%d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值