面试题01.07、旋转矩阵

给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。

不占用额外内存空间能否做到?
注意:本题与主站 48题 相同:https://leetcode-cn.com/problems/rotate-image/

来源:力扣(LeetCode)
题目链接:https://leetcode-cn.com/problems/rotate-matrix-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题方法一:使用额外空间

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        vector<vector<int>> ans;
        int n = matrix.size();
        for(int i = 0; i < n; ++i){
            vector<int> row;
            for(int j = 0; j < n; ++j){
                row.push_back(matrix[j][i]);
            }
            reverse(row.begin(), row.end());
            ans.push_back(row);
        }
        matrix.clear();
        matrix = ans;
    }
};

解题方法二:矩阵水平翻转再对角线翻转

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < n / 2; ++i){
            for(int j = 0; j < n; ++j){
                swap(matrix[i][j], matrix[n - 1 - i][j]);
            }
        }
        for(int i = 0; i < n; ++i){
            for(int j = i; j < n; ++j){
                swap(matrix[i][j], matrix[j][i]);
            }
        }
    }
}

解题方法三:原地旋转

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i = 0; i < n / 2; ++i){
            for(int j = 0; j < (n + 1) / 2; ++j){
                swap(matrix[i][j], matrix[n - j - 1][i]);
                swap(matrix[n - j - 1][i], matrix[n - i - 1][n - j - 1]);
                swap(matrix[n - i - 1][n - j - 1], matrix[j][n - i - 1]);
            }
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值