23牛客多校9 I Non-Puzzle: Segment Pair

也许更好的阅读体验

D e s c r i p t i o n \mathcal{Description} Description
n n n对区间,要求每对区间恰好选一个使得选出来的 n n n个区间有交集,问有多少方案数
1 ≤ n , l i , r i ≤ 5 × 1 0 5 1\le n, l_i,r_i\le 5×10^5 1n,li,ri5×105

S o l u t i o n \mathcal{Solution} Solution
注意到区间的值域也是 5 × 1 0 5 5×10^5 5×105,考虑从值域入手,也就是枚举每个点看有多少种方案使最后的交集包含这个点
设有 k k k对区间的两个区间都包含这个点,那么就有 2 k 2^k 2k种方案
显然,这样的方法会算重,因为不同的点可能对应相同的选择方案,考虑当前枚举的点是 i i i,假设 i − 1 i-1 i1对应的方案数为 2 m 2^m 2m,如果点 i i i相比点 i − 1 i-1 i1没有新增的区间,也没有减少区间,那么 i i i i − 1 i-1 i1方案数是完全一样的,如果 i i i i − 1 i-1 i1新增了一些区间并没有减少区间,那么 i i i对应的方案数是包含了 i − 1 i-1 i1对应的方案数的,新增的方案数是二者的差 2 k − 2 m 2^k-2^m 2k2m,而如果减少了一些区间,那么我们记减少了后对应的方案数为 2 p 2^p 2p,新增的方案数仍然是二者的差 2 k − 2 p 2^k-2^p 2k2p,我们只需维护这个过程即可,总复杂度 O ( n ) O(n) O(n)

C o d e \mathcal{Code} Code

#include <cstdio>
#include <vector>
using namespace std;
const int maxn = 5e5 + 10;
const int mod = 1e9 + 7;
int n, k, ans;
int num[maxn], mi[maxn];
vector <int> in[maxn], out[maxn];
int mo (int x)
{
    if (x >= mod)   return x - mod;
    return x;
}
int main ()
{
    scanf("%d", &n);
    mi[0] = 1;
    for (int i = 1; i <= n; ++i)    mi[i] = mo(mi[i - 1] << 1);
    for (int i = 1, l, r; i <= n; ++i) {
        scanf("%d%d", &l, &r);
        in[l].push_back(i), out[r + 1].push_back(i);
        scanf("%d%d", &l, &r);
        in[l].push_back(i), out[r + 1].push_back(i);
    }
    int tot = 0, mx = 500000, lst = mx + 1;
    for (int i = 1; i <= mx; ++i) {
        for (int v : out[i]) {
            if (num[v] == 2)    --k;
            --num[v];
            if (!num[v])    --tot;
        }
        if (tot < n)	lst = mx + 1;
        else	lst = k;
        for (int v : in[i]) {
            if (!num[v])    ++tot;
            ++num[v];
            if (num[v] == 2)    ++k;
            if (tot == n) {
				if(lst == mx + 1 || k > lst)    ans = mo(mo(ans + mod - mi[lst]) + mi[k]);
				lst = k;
			}
        }
    }
    printf("%d\n", ans);
    return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值