1 结构风险最小化
为了防止过拟合提出的策略。
2 正则化
为了减小测试误差的行为。
3 线性回归
预测连续值。
4 逻辑斯蒂回归
计算属于每一个分类的概率,在各分类概率值中找最大值,概率值最大的这个分类即为结果。
5 Sigmoid 与 SoftMax 函数
Sigmoid函数:
SoftMax函数:
6 决策树
是一种十分常用的分类方法,需要监管学习,监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。
7 信息熵 条件熵 信息增益
信息熵度量不确定性。
条件熵度量某种条件下的不确定性。
信息增益代表了某种条件下,原始变量不确定性的减小程度。
8 线性判别分析 LDA
将数据投影在低维度上,并且投影后同种类别数据的投影点尽可能的接近,不同类别数据的投影点的中心点尽可能的远。
9 概率近似正确 PAC
同等条件下,模型越复杂泛化误差越大。同一模型在样本满足一定条件的情况下,样本数量越大,模型泛化误差越小。
10 自适应提升AdaBoost
针对同一个训练集训练不同的弱分类器,然后把这些弱分类器集合起来,构成一个更强的强分类器。