AI作业2

本文介绍了机器学习中的基本概念,包括防止过拟合的策略如结构风险最小化和正则化,预测模型如线性回归和逻辑斯蒂回归,以及Sigmoid和SoftMax函数在分类中的应用。此外,还涉及了决策树的学习过程,信息理论中的熵和增益,线性判别分析LDA,以及泛化误差和PAC学习理论。最后提到了集成学习中的AdaBoost算法。
摘要由CSDN通过智能技术生成

1 结构风险最小化

为了防止过拟合提出的策略。

2 正则化

为了减小测试误差的行为。

3 线性回归

预测连续值。

4 逻辑斯蒂回归

计算属于每一个分类的概率,在各分类概率值中找最大值,概率值最大的这个分类即为结果。

5 Sigmoid 与 SoftMax 函数

Sigmoid函数:

SoftMax函数:

6 决策树

是一种十分常用的分类方法,需要监管学习,监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。

7 信息熵 条件熵 信息增益

信息熵度量不确定性。

条件熵度量某种条件下的不确定性。

信息增益代表了某种条件下,原始变量不确定性的减小程度。

8 线性判别分析 LDA

将数据投影在低维度上,并且投影后同种类别数据的投影点尽可能的接近,不同类别数据的投影点的中心点尽可能的远。

9 概率近似正确 PAC

同等条件下,模型越复杂泛化误差越大。同一模型在样本满足一定条件的情况下,样本数量越大,模型泛化误差越小。

10 自适应提升AdaBoost

针对同一个训练集训练不同的弱分类器,然后把这些弱分类器集合起来,构成一个更强的强分类器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值