矩阵max_pooling 二维矩阵滑动窗口

题目链接

题目大意
给定M×N矩阵,求经过给定size为A×B的最大池化处理后结果
M, N <= 2e3, A <= M, B <= N
直接上二维线段树超时了。
这里用滑动窗口,先对每行使用滑动窗口,再对得到的数组的每列使用滑动窗口即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <deque>
using namespace std;
const int N = 2e3 + 5;
int t[N][N];
int ans[N][N];
deque<int> win(N);

// 标准的滑动窗口
void solve1(int n, int len, int *arr, int *ans) {
	win.clear();
    for(int i = 0; i < n; i ++) {
        while(!win.empty() && arr[win.back()] < arr[i])
			win.pop_back();
		while(!win.empty() && win.front() < i - len + 1)
			win.pop_front();
		win.push_back(i);
		if(i + 1 >= len)
			ans[i - len + 1] = arr[win.front()];
    }
}


int main() {
    ios::sync_with_stdio(false);
	int m, n, a, b;
    cin >> m >> n >> a >> b;
    for(int i = 0; i < m; i ++)
        for(int j = 0; j < n; j ++)
            cin >> t[i][j];
	for(int i = 0; i < m; i ++)
		solve1(n, b, t[i], ans[i]);

    // 遍历每列
    // 第二次用作滑动窗口的数组是经过第一次处理后的
	int len = a;
	for(int i = 0; i < n; i ++) {
		win.clear();
		for(int j = 0; j < m; j ++) {
			while(!win.empty() && ans[win.back()][i] < ans[j][i])
				win.pop_back();
			while(!win.empty() && win.front() < j - len + 1)
				win.pop_front();
			win.push_back(j);
			if(j + 1 >= len)
				ans[j - len + 1][i] = ans[win.front()][i];
		}
	}

	for(int i = 0; i < m - a + 1; i ++)
		for(int j = 0; j < n - b + 1; j ++)
			cout << ans[i][j] << (j == n - b ? '\n' : ' ');
	return 0;
}
```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值